![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Biochemical engineering > Biotechnology > Genetic engineering
What should individuals and society do when genetic screening becomes widely available and with its impact on current and future generations still uncertain? How can our education systems around the world respond to these developments? Reproductive and genetic technologies (RGTs) are increasingly controversial and political. We are entering an era where we can design future humans, firstly, by genetic screening of "undesirable" traits or indeed embryos, but perhaps later by more radical genetic engineering. This has a profound effect on what we see as normal, acceptable and responsible. This book argues that these urgent and biopolitical issues should be central to how biology is taught as a subject. Debate about life itself has always been at the forefront of connected molecular, genetic and social/personal identity levels, and each of these levels requires processes of communication and debate, what Anthony Giddens called in passing life politics. In this book Padraig Murphy opens the term up, with examples from field research in schools, student responses to educational films exploring the future of RGTs, and science studies of strategic biotechnology and the lab practices of genetic screening. Life political debate is thoroughly examined and is identified as a way of connecting mainstream education of biology with future generations. Biotechnology, Education and Life Politics will appeal to post-graduates and academics involved with science education, science communication, communication studies and the sociology of education.
DNA, once the exclusive domain of scientists in research labs, is now the darling of popular and social media. With personal genetic testing kits in homes and GMO foods in stores, DNA is an increasingly familiar term. Unfortunately, what people know, or think they know, about DNA and genetics is often confused or incorrect. Contrary to popular belief, for instance, genes don't "skip a generation" and, no, human DNA is not "different" from DNA of other species. With popular misconceptions proliferating in the news and on the internet, how can anyone sort fact from fiction? DNA Demystified satisfies the public appetite for and curiosity about DNA and genetics. Alan McHughen, an accomplished academic and public science advocate, brings the reader up-to-speed on what we know, what we don't, and where genetic technologies are taking us. The book begins with the basic groundwork and a brief history of DNA and genetics. Chapters then cover newsworthy topics, including DNA fingerprinting, using DNA in forensic analyses, and identifying cold-case criminals. For readers intrigued by the proliferation of at-home DNA tests, the text includes fascinating explorations of genetic genealogy and family tree construction-crucial for people seeking their biological ancestry. Other chapters describe genetic engineering in medicine and pharmaceuticals, and the use of those same technologies in creating the far more controversial GMOs in food and agriculture. Throughout, the book raises provocative ethical and privacy issues arising from DNA and genetic technologies. With the author's comprehensive expertise, DNA Demystified offers an informal yet authoritative guide to the genetic marvel of DNA.
Each plant species has its own unique passage that is affected by its gene pool, dispersal ability, interactions with competitors and pests, and the habitats and climactic conditions to which it is exposed. This book will explore plant species as dynamic entities within this passage, following the four stages of plant species life that normally occur. Those four stages can be identified as birth, expansion, differentiation and loss of cohesion, and decline/extinction. Each chapter focuses on part of the speciation process and examines it closely in the light of exploring the species passage from birth to death.
This book presents descriptive overviews of gene editing strategies across multiple species while also offering in-depth insight on complex cases of application in the field of tissue engineering and regenerative medicine. Chapters feature contributions from leaders in stem cell therapy and biology, providing a comprehensive view of the application of gene therapy in numerous fields with an emphasis on ophthalmology, stem cells, and agriculture. The book also highlights recent major technological advances, including ZFN, TALEN, and CRISPR. Precision Medicine, CRISPR, and Genome Engineering is part of the highly successful Advances in Experimental Medicine and Biology series. It is an indispensable resource for researchers and students in genetics as well as clinicians.
Human genetic enhancement, examined from the standpoint of the new field of political bioethics, displaces the age-old question of truth: What is human nature? This book displaces that question with another: What kind of human nature should humans want to create for themselves? To answer that question, this book answers two others: What constraints should limit the applications of rapidly developing biotechnologies? What could possibly form the basis for corresponding public policy in a democratic society? Benjamin Gregg focuses on the distinctly political dimensions of human nature, where politics refers to competition among competing values on which to base public policy, legislation, and political culture. This book offers citizens of democratic communities a broad perspective on how they together might best approach urgent questions of how to deal with the socially and morally challenging potential for human genetic engineering.
Human genetic enhancement, examined from the standpoint of the new field of political bioethics, displaces the age-old question of truth: What is human nature? This book displaces that question with another: What kind of human nature should humans want to create for themselves? To answer that question, this book answers two others: What constraints should limit the applications of rapidly developing biotechnologies? What could possibly form the basis for corresponding public policy in a democratic society? Benjamin Gregg focuses on the distinctly political dimensions of human nature, where politics refers to competition among competing values on which to base public policy, legislation, and political culture. This book offers citizens of democratic communities a broad perspective on how they together might best approach urgent questions of how to deal with the socially and morally challenging potential for human genetic engineering.
This manual encompasses an integrated series of molecular biology laboratory exercises that involve the cloning and analysis of the bioluminescence "(lux)" genes from the marine bacterium "Vibrio fischeri." The manual is divided into discrete units with each demonstrating one or more aspects of the cloning project. The manual is based on one of nature's most fascinating biological phenomenon: the biological production of light. This results in a recurrent theme of interest and makes the project very relevant to interdisciplinary topics such as fish symbiosis, biochemistry, biophysics, etc. Includes instruction in the basic techniques of modern molecular biology: DNA isolation and analysis, DNA restriction, agarose gel electrophoresis, ligations, transformation of recombinant DNA, preparation and screening a genomic library, restriction mapping, Southern blotting, hybridization, DNA sequencing, pulsed field gel electrophoresis. Designed for a one semester course in Molecular Biology. Also appropriate for a molecular biology component of Microbial Genetics, Genetics, Biochemistry, or Advanced Microbiology courses.
Among the many types of DNA binding domains, C2H2 zinc finger proteins (ZFPs) have proven to be the most malleable for creating custom DNA-binding proteins. In Engineered Zinc Finger Proteins: Methods and Protocols, expert researchers from some of the most active laboratories in this field present detailed methods, guidance, and perspectives. The volume contains sections covering the engineering of ZFPs, methods for the creation, evaluation, and delivery of artificial transcription factors (ATFs), methods for the creation and evaluation of zinc finger nucleases (ZFNs), and a collection of the several applications and assays beyond ATFs and ZFNs, including zinc finger transposases and ChIP-seq methodology amongst other subjects. Written in the highly successful Methods in Molecular Biology (TM) series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and notes on troubleshooting and avoiding known pitfalls. Comprehensive and cutting-edge, Engineered Zinc Finger Proteins: Methods and Protocols aims to aid both seasoned practitioners and new investigators with its vital methods and insights as they seek to create the next generation of engineered ZFPs and applications.
Much research has focused on the basic cellular and molecular biological aspects of stem cells. Much of this research has been fueled by their potential for use in regenerative medicine applications, which has in turn spurred growing numbers of translational and clinical studies. However, more work is needed if the potential is to be realized for improvement of the lives and well-being of patients with numerous diseases and conditions. This book series 'Cell Biology and Translational Medicine (CBTMED)' as part of SpringerNature's longstanding and very successful Advances in Experimental Medicine and Biology book series, has the goal to accelerate advances by timely information exchange. Emerging areas of regenerative medicine and translational aspects of stem cells are covered in each volume. Outstanding researchers are recruited to highlight developments and remaining challenges in both the basic research and clinical arenas. This current book is the sixth volume of a continuing series.
History will mark the twenty-first century as the dawn of the age of precise genetic manipulation. Breakthroughs in genome editing are poised to enable humankind to fundamentally transform life on Earth. Those familiar with genome editing understand its potential to revolutionize civilization in ways that surpass the impact of the discovery of electricity and the development of gunpowder, the atomic bomb, or the Internet. Significant questions regarding how society should promote or hinder genome editing loom large in the horizon. And it is up to humans to decide the fate of this powerful technology. Rewriting Nature is a compelling, thought-provoking interdisciplinary exploration of the law, science, and policy of genome editing. The book guides readers through complex legal, scientific, ethical, political, economic, and social issues concerning this emerging technology, and challenges the conventional false dichotomy often associated with science and law, which contributes to a growing divide between both fields.
History will mark the twenty-first century as the dawn of the age of precise genetic manipulation. Breakthroughs in genome editing are poised to enable humankind to fundamentally transform life on Earth. Those familiar with genome editing understand its potential to revolutionize civilization in ways that surpass the impact of the discovery of electricity and the development of gunpowder, the atomic bomb, or the Internet. Significant questions regarding how society should promote or hinder genome editing loom large in the horizon. And it is up to humans to decide the fate of this powerful technology. Rewriting Nature is a compelling, thought-provoking interdisciplinary exploration of the law, science, and policy of genome editing. The book guides readers through complex legal, scientific, ethical, political, economic, and social issues concerning this emerging technology, and challenges the conventional false dichotomy often associated with science and law, which contributes to a growing divide between both fields.
The Mutator Transposable Element Family of Maize.- Protein Phosphorylation and the Regulation of Cellular Processes by the Homologous Two-Component Systems of Bacteria.- The Peculiar Nature of Codon Usage in Primates.- The Role of Nodulation Genes in Bacterium-Plant Communication.- Regulation of Gene Expression by Epidermal Growth Factor.- Machinery for Protein Import into Chloroplasts and Mitochondria.- High-Level Expression of Foreign Genes in Mammalian Cells.- Aromatic Hydrocarbon Degradation: A Molecular Approach.- Employment of Fibroblasts for Gene Transfer Applications for Grafting into the Central Nervous System.- The Molecular Biology of Amino Acid Biosynthesis in Plants.- Genetic Manipulation of Bacillus Thuringiensis Insectidal Crystal Protein Genes in Bacteria.- Progress Towards Gene Targeting in Plants.- Molecular Biology of Mating-Type Determination in Schizophyllum Commune.- Functions of Intracellular Protein Degradation in Yeast.- Transgenic Fish for Aquaculture.
This book presents a historicised account of the Feminist International Network of Resistance to Reproductive and Genetic Engineering (FINRRAGE), a coordinated effort during the 1980s and 1990s by an international group of women to create and disseminate feminist knowledge about the then-new field of reproductive technologies. Bringing insights from science and technology studies together with social movements and feminist theory, it seeks to examine larger questions about knowledge and expertise in activist engagements with rapidly-developing technologies, as well as explore an important and neglected episode of feminist history. Its findings will be relevant to scholars in science studies, gender and women's studies and social movements, as well as to anyone with an interest in reproductive technologies and the history of feminist activism.
A vision of the future where the latest Silicon Valley tech meets cutting-edge genetics. Decoding the World is a buddy adventure about the quest to live meaningfully in a world with such uncertainty. It starts with Po Bronson coming to IndieBio. Arvind Gupta created IndieBio as a laboratory for early biotech startups trying to solve major world problems. Glaciers melting. Dying bees. Infertility. Cancer. Ocean plastic. Pandemics. As they travel around the world, finding scientists to join their cause, the authors bring their first-hand experience to the great mysteries that haunt our future. Natural resource depletion. Job-taking robots. China's global influence. Decoding the World is the kind of book you get when you give two guys $40 million, a world full of messy big problems, a genetics laboratory to play in, and a set of Borges' collected works. After looking through their lens, you'll never see the world the same.
This book covers trends in modern biotechnology. All aspects of this interdisciplinary technology, where knowledge, methods and expertise are required from chemistry, biochemistry, microbiology, genetics, chemical engineering and computer science, are treated. More information as well as the electronic version is available at springer.com.
This book is open access under a CC BY-NC 2.5 license. This book offers 19 detailed protocols on the use of induced mutations in crop breeding and functional genomics studies, which cover topics including chemical and physical mutagenesis, phenotypic screening methods, traditional TILLING and TILLING by sequencing, doubled haploidy, targeted genome editing, and low-cost methods for the molecular characterization of mutant plants that are suitable for laboratories in developing countries. The collection of protocols equips users with the techniques they need in order to start a program on mutation breeding or functional genomics using both forward and reverse-genetic approaches. Methods are provided for seed and vegetatively propagated crops (e.g. banana, barley, cassava, jatropha, rice) and can be adapted for use in other species.
Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune disorders, and reproductive and respiratory diseases. Additionally, different organ cancers, such as breast, lung, and colon, are discussed. This book is a valuable source for graduate students and researchers in genetics and bioinformatics, and several biomedical field members interested in applying computational epigenetics in their research.
What are genes? What do genes do? These seemingly simple questions are in fact challenging to answer accurately. As a result, there are widespread misunderstandings and over-simplistic answers, which lead to common conceptions widely portrayed in the media, such as the existence of a gene 'for' a particular characteristic or disease. In reality, the DNA we inherit interacts continuously with the environment and functions differently as we age. What our parents hand down to us is just the beginning of our life story. This comprehensive book analyses and explains the gene concept, combining philosophical, historical, psychological and educational perspectives with current research in genetics and genomics. It summarises what we currently know and do not know about genes and the potential impact of genetics on all our lives. Making Sense of Genes is an accessible but rigorous introduction to contemporary genetics concepts for non-experts, undergraduate students, teachers and healthcare professionals.
Louis-Marie Houdebine and Jianglin Fan The study of biological functions of proteins and their possible roles in the pathogenesis of human diseases requires more and more relevant animal m- els. Although mice including genetically modified mice offer many possibilities, other non-murine species are absolutely required in some circumstances. Rabbit is one of these species, which has been widely used in biomedical studies. This animal is genetically and physiologically closer to humans including cardiov- cular system and metabolism characteristics. Rabbit is thus more appropriate than mice to study some diseases such as atherosclerosis and lipid metabolism. Because of its larger size, surgery manipulation, bleeding, and turn-over studies are much easier performed in rabbits than in mice. Furthermore, transgenic rabbits can be produced using microinjection and other methods such as lentiviral v- tors. Cloning in rabbits has been proved possible, even though still laborious and time-consuming. Hopefully, functional rabbit ES cell lines will be available in the coming years. Gene deletion or knock-out in rabbits will then become possible.
Summarizing landmark research, Volume 2 of this essential series furnishes information on the availability of germplasm resources that breeders can exploit for producing high-yielding cereal crop varieties. Written by leading international experts, this volume offers the most comprehensive and up-to-date information on employing genetic resources to increase the yield of those cereal crops that provide the main source of nutrition for two-thirds of the world. In thirteen succinct chapters, Genetic Resources, Chromosome Engineering, and Crop Improvement: Cereals, Volume 2 focuses on wheat, rice, maize, oats, barley, millet, sorghum, and rye, as well as triticale: a wheat and rye hybrid with great potential. An introductory chapter outlines the cytogenetic architecture of cereal crops, describes the principles and strategies of cytogenetics and breeding, and summarizes landmarks in current research. This sets the stage for the ensuing crop-specific chapters. Each chapter generally provides a comprehensive account of the crop, its origin, wild relatives, exploitation of genetic resources in the primary, secondary, and tertiary gene pools through breeding and cytogenetic manipulation, and genetic enrichment using the tools of molecular genetics and biotechnology. Certain to become the standard reference for improving the yields of these critical grains, this book is the definitive source of information for plant breeders, agronomists, cytogeneticists, taxonomists, molecular biologists, biotechnologists, and graduate students and researchers in these fields.
This new edition explores current and emerging mutagenesis methods focusing specifically on mammalian systems and commonly used model organisms through comprehensive coverage and detailed protocols. Since the first edition, major advances and discoveries have made chromosomal mutagenesis a widely used technique and one that is available to any molecular biology laboratory, and this collection provides detailed protocols, case-studies, and reviews from thought-leaders in the field. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and fully updated, Chromosomal Mutagenesis, Second Edition aims to help speed scientific discovery and aid in the next advances in the field.
DNA replication is arguably the most crucial process at work in living cells. It is the mechanism by which organisms pass their genetic information from one generation to the next and life on Earth would be unthinkable without it. Despite the discovery of DNA structure in the 1950s, the mechanism of its replication remains rather elusive. This work makes important contributions to this line of research. In particular, it addresses two key questions in the area of DNA replication: which evolutionary forces drive the positioning of replication origins in the chromosome and how is the spatial organization of replication factories achieved inside the nucleus of a cell?. A cross-disciplinary approach uniting physics and biology is at the heart of this research. Along with experimental support, statistical physics theory produces optimal origin positions and provides a model for replication fork assembly in yeast. Advances made here can potentially further our understanding of disease mechanisms such as the abnormal replication in cancer.
Synthetic Biology is already an object of intensive debate. However, to a great extent the discussion to date has been concerned with fundamental ethical, religious and philosophical questions. By contrast, based on an investigation of the field’s scientific and technological character, this book focuses on new functionalities provided by synthetic biology and explores the associated opportunities and risks. Following an introduction to the subject and a discussion of the most central paradigms and methodologies, the book provides an overview of the structure of this field of science and technology. It informs the reader about the current stage of development, as well as topical problems and potential opportunities in important fields of application. But not only the science itself is in focus. In order to investigate its broader impact, ecological as well as ethical implications will be considered, paving the way for a discussion of responsibilities in the context of a field at a transitional crossroads between basic and applied science. In closing, the requirements for a suitable regulatory framework are discussed. The book is intended as a source of information and orientation for researchers, students and practitioners in the natural sciences and technology assessment; for members of scientific and technological, governmental and funding institutions; and for members of the general public interested in essential information on the current status, prospects and implications of synthetic biology.
Nuclear Reprogramming: Methods and Protocols, Second Edition includes not only classic methods to perform nuclear transfer in different species but also several techniques to assess the early and late development of the reconstructed embryos, at the cellular, molecular, and epigenetic level. Over the past several years, many technical improvements have been made to improve somatic cell nuclear transfer (SCNT) efficiency, all of which are reflected in the detailed chapters of this fully revised collection. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and up-to-date, Nuclear Reprogramming: Methods and Protocols, Second Edition will be of interest not only to cloners but also to researchers concerned with studying the development of embryos.
From breakfast toast to evening wine, yeast is the microscopic thing that we cannot live without. We knew what yeast did as an invisible brewer and baker long before we had a clue about the existence of microorganisms. Ten thousand years ago, our ancestors abandoned bush meat and wild fruit in favor of farming animals and cultivating grain. Leaving the forests and grasslands, our desire for beer and wine produced by the fungus was a major stimulus for agricultural settlement. It takes a village to run a brewery or tend a vineyard. We domesticated wild yeast and yeast domesticated us. With the inevitable escape of the fungus from beer vats into bread dough, our marriage with yeast was secured by an appetite for fresh loaves of leavened bread. Over the millennia, we have adapted the technologies of brewing, winemaking, and baking and have come to rely on yeast more and more. Yeast produces corn ethanol and other biofuels and has become the genetically-modified darling of the pharmaceutical business as a source of human insulin and a range of life-saving medicines. These practical uses of yeast have been made possible by advances in our understanding of its biology, and the power of genetic engineering has been used to modify the fungus to do just about anything we wish. We know more about yeast than any other organism built from complex cells like our own. To understand yeast is to understand life. In this book Nicholas P. Money offers a celebration of our favorite microorganism. |
You may like...
Pascal Programming for Libraries…
Charles H. Davis, Gerald Lundeen, …
Hardcover
R2,284
Discovery Miles 22 840
Cataloguing Outside the Box - A…
Patricia Falk, Stefanie Hunker
Paperback
R1,332
Discovery Miles 13 320
|