![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Production engineering > Industrial quality control
Understand microgrids and networked microgrid systems Microgrids are interconnected groups of energy sources that operate together, capable of connecting with a larger grid or operating independently as needed and network conditions require. They can be valuable sources of energy for geographically circumscribed areas with highly targeted energy needs, and for remote or rural areas where continuous connection with a larger grid is difficult. Microgrids' controllability makes them especially effective at incorporating renewable energy sources. Microgrids: Theory and Practice introduces readers to the analysis, design, and operation of microgrids and larger networked systems that integrate them. It brings to bear both cutting-edge research into microgrid technology and years of industry experience in designing and operating microgrids. Its discussions of core subjects such as microgrid modeling, control, and optimization make it an essential short treatment, valuable for both academic and industrial study. Readers will acquire the skills needed to address existing problems and meet new ones as this crucial area of power engineering develops. Microgrids: Theory and Practice also features: Incorporation of new cyber-physical system technologies for enabling microgrids as resiliency resources Theoretical treatment of a wide range of subjects including smart programmable microgrids, distributed and asynchronous optimization for microgrid dispatch, and AI-assisted microgrid protection Practical discussion of real-time microgrids simulations, hybrid microgrid design, transition to renewable microgrid networks, and more Microgrids: Theory and Practice is ideal as a textbook for graduate and advanced undergraduate courses in power engineering programs, and a valuable reference for power industry professionals looking to address the challenges posed by microgrids in their work.
Quality Analysis of Additively Manufactured Metals: Simulation Approaches, Processes, and Microstructure Properties provides readers with a firm understanding of the failure and fatigue processes of additively manufactured metals. With a focus on computational methods, the book analyzes the process-microstructure-property relationship of these metals and how it affects their quality while also providing numerical, analytical, and experimental data for material design and investigation optimization. It outlines basic additive manufacturing processes for metals, strategies for modeling the microstructural features of metals and how these features differ based on the manufacturing process, and more. Improvement of additively manufactured metals through predictive simulation methods and microdamage and micro-failure in quasi-static and cyclic loading scenarios are covered, as are topology optimization methods and residual stress analysis techniques. The book concludes with a section featuring case studies looking at additively manufactured metals in automotive, biomedical and aerospace settings.
Formerly titled Quality Control, the field's most accessible introduction to quality has been renamed and revamped to focus on quantitative aspects of quality improvement. New chapters on Lean Enterprise, Six Sigma, Experimental Design, and Taguchi's Quality Engineering have been added, and this new Ninth Edition adds comprehensive coverage of fundamental statistical quality improvement concepts. A practical state-of-the-art approach is stressed throughout, and sufficient theory is presented to ensure that students develop a solid understanding of basic quality principles. To improve accessibility, probability and statistical techniques are presented through simpler math or developed via tables and charts. As with previous editions, this text is written to serve a widely diverse audience of students, including the growing number of "math shy" individuals who must play key roles in quality improvement.
Materials Characterization Using Nondestructive Evaluation (NDE) Methods discusses NDT methods and how they are highly desirable for both long-term monitoring and short-term assessment of materials, providing crucial early warning that the fatigue life of a material has elapsed, thus helping to prevent service failures. Materials Characterization Using Nondestructive Evaluation (NDE) Methods gives an overview of established and new NDT techniques for the characterization of materials, with a focus on materials used in the automotive, aerospace, power plants, and infrastructure construction industries. Each chapter focuses on a different NDT technique and indicates the potential of the method by selected examples of applications. Methods covered include scanning and transmission electron microscopy, X-ray microtomography and diffraction, ultrasonic, electromagnetic, microwave, and hybrid techniques. The authors review both the determination of microstructure properties, including phase content and grain size, and the determination of mechanical properties, such as hardness, toughness, yield strength, texture, and residual stress.
Every parent is concerned when a child is slow to become a mature adult. This is also true for any product designer, regardless of their industry sector. For a product to be mature, it must have an expected level of reliability from the moment it is put into service, and must maintain this level throughout its industrial use. While there have been theoretical and practical advances in reliability from the 1960s to the end of the 1990s, to take into account the effect of maintenance, the maturity of a product is often only partially addressed. Product Maturity 2 fills this gap as much as possible; a difficult exercise given that maturity is a transverse activity in the engineering sciences; it must be present throughout the lifecycle of a product.
As the wine industry has experienced a period of rapid global expansion, there is a renewed emphasis on quality and consistency even within the small winery industry. Written for the small production program, "A Complete Guide to Quality in Small-Scale ""Wine Making "is for the novice to intermediate level winemaker seeking foundational information in chemistry and sensory science as they relate to wine quality at a technical level. Drawing from personal experience as well as scientific
literature, this book introduces the core concepts of winemaking
before delving into methods and analysis to provide practical
insights into creating and maintaining quality in the wine
product.
Every parent is concerned when a child is slow to become a mature adult. This is also true for any product designer, regardless of their industry sector. For a product to be mature, it must have an expected level of reliability from the moment it is put into service, and must maintain this level throughout its industrial use. While there have been theoretical and practical advances in reliability from the 1960s to the end of the 1990s, to take into account the effect of maintenance, the maturity of a product is often only partially addressed. Product Maturity 1 fills this gap as much as possible; a difficult exercise given that maturity is a transverse activity in the engineering sciences; it must be present throughout the lifecycle of a product.
Understand and utilize the latest developments in Weibull inferential methods While the Weibull distribution is widely used in science and engineering, most engineers do not have the necessary statistical training to implement the methodology effectively. "Using the Weibull Distribution: Reliability, Modeling, " "and Inference "fills a gap in the current literature on the topic, introducing a self-contained presentation of the probabilistic basis for the methodology while providing powerful techniques for extracting information from data. The author explains the use of the Weibull distribution and its statistical and probabilistic basis, providing a wealth of material that is not available in the current literature. The book begins by outlining the fundamental probability and statistical concepts that serve as a foundation for subsequent topics of coverage, including: - Optimum burn-in, age and block replacement, warranties and renewal theory - Exact inference in Weibull regression - Goodness of fit testing and distinguishing the Weibull from the lognormal - Inference for the Three Parameter Weibull Throughout the book, a wealth of real-world examples showcases the discussed topics and each chapter concludes with a set of exercises, allowing readers to test their understanding of the presented material. In addition, a related website features the author's own software for implementing the discussed analyses along with a set of modules written in Mathcad(R), and additional graphical interface software for performing simulations. With its numerous hands-on examples, exercises, and software applications, "Using the Weibull Distribution "is an excellent book for courses on quality control and reliability" "engineering at the upper-undergraduate and graduate levels. The book also serves as a" "valuable reference for engineers, scientists, and business analysts who gather and interpret" "data that follows the Weibull distribution
The book provides background information about technical solutions, processes and methodology to develop future automated mobility solutions. Beginning from the legal requirements as the minimum tolerable risk level of the society, the book provides state-of-the-art risk-management methodologies. The system engineering approach based on todays engineering best practices enhanced by principles derived from cybernetics. The approach derived from the typical behaviour of a human driver in public road traffic to a cybernetical based system engineering approach. Beyond the system engineering approach, a common behaviour model for the operational domain will show aspects how to extend the system engineering model with principles of cybernetics. The role and the human factors of road traffic participants and drivers of motor vehicles are identified and several viewpoints for different observers show how such mixed traffic scenarios could be assessed and optimised. The influence of the changing mobility demands of the society and the resulting changes to the origination of producer, owner, driver and supplier show aspects for future liability and risk share option for new supply chains. Examples from various industries provide some well-proven engineering principles how to adapt those for the future mobility for the benefit of the users. The aim of the book is to raise awareness that the safety provided by a product, a means of transport or a system up to an entire traffic system depends on the capabilities of the various actors. In addition to the driver and passengers, there are also other road users, maintenance personnel and service providers, who must have certain abilities to act safely in traffic. These are also the capabilities of the organisation, not only the organisation that develops or brings the product to market, but also the organisation that is responsible for the operation and the whole lifecycle of the products. The book is for people who want to get involved in the mobility of the future. People, that have ideas to become a player who want to help shape the future mobility of society and who want to bring responsible solutions for users into the market.
The area of Reliability has become a very important and active area of research. This is clearly evident from the large body of literature that has been developed in the form of books, volumes and research papers since 1988 when the previous Handbook of Statistics on this area was prepared by P.R. Krishnaiah and C.R. Rao. This is the reason we felt that this is indeed the right time to dedicate another volume in the Handbook of Statistics series to highlight some recent advances in the area of Reliability. With this purpose in mind, we solicited articles from leading experts working in the area of Reliability from both academia and industry. This, in our opinion, has resulted in a volume with a nice blend of articles (33 in total) dealing with theoretical, methodological and applied issues in Reliability.
This textbook presents the principal methods of stress analysis for the design of frame structures, beginning with a description of the basic criteria for probabilistic safety verification used in modern codes. The Force Method and the Displacement Method are dealt with, together with their applications to more common structural situations. A special chapter is dedicated to the second order analysis required for slender structures and for the elaboration of instability problems. In turn, a thorough set of numerical examples rounds out the text. Given its scope, the book offers an ideal learning resource for students of Civil and Building Engineering and Architecture, and a valuable reference guide for practicing structural design professionals.
|
![]() ![]() You may like...
Shackled - One Woman's Dramatic Triumph…
Mariam Ibraheem, Eugene Bach
Paperback
Design Thinking for Education…
Joyce Hwee Ling Koh, Ching Sing CHAI, …
Hardcover
R4,121
Discovery Miles 41 210
|