![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Other technologies > Marine engineering
This open access book offers a timely guide to challenges and current practices to permanently plug and abandon hydrocarbon wells. With a focus on offshore North Sea, it analyzes the process of plug and abandonment of hydrocarbon wells through the establishment of permanent well barriers. It provides the reader with extensive knowledge on the type of barriers, their functioning and verification. It then discusses plug and abandonment methodologies, analyzing different types of permanent plugging materials. Last, it describes some tests for verifying the integrity and functionality of installed permanent barriers. The book offers a comprehensive reference guide to well plugging and abandonment (P&A) and well integrity testing. The book also presents new technologies that have been proposed to be used in plugging and abandoning of wells, which might be game-changing technologies, but they are still in laboratory or testing level. Given its scope, it addresses students and researchers in both academia and industry. It also provides information for engineers who work in petroleum industry and should be familiarized with P&A of hydrocarbon wells to reduce the time of P&A by considering it during well planning and construction.
Robotic marine vessels can be used for a wide range of purposes, including defence, marine science, offshore energy and hydrographic surveys, and environmental surveys and protection. Such vessels need to meet a variety of criteria: they must be able to operate in salt water, and to communicate and be controlled over large distances, even when submerged or in inclement weather. Further challenges include 3D navigation of individual vehicles, groups or squadrons. This book covers the current state of research in navigation, modelling and control of marine autonomous vehicles, and deals with various related topics, including collision avoidance, communication, and a range of applications. It provides valuable insights for an audience of researchers, academics and postgraduate students interested in autonomous marine vessels, robotics, and electrical and automobile engineering.
This book presents the proceedings of CIDIN and COPINAVAL. The papers present the development of the navy, maritime and riverine industry, contributing to the scientific and technological progress and development in the sector. In 2019 the congresses occurred in Cartagena, Colombia, a reference for science and technology innovation for Latin-American naval industry.
This book removes the mystery and pressure from calculations by equipping readers with the tools they need to understand calculations and how they work. This is done by using straight-forward language and showing fully worked out, rig-based examples throughout. The book comprises of mini lessons which are never more than two pages long and a complete lesson is always in view when the book is open in front of you. Lessons progress in a logical manner and once the book is finished, the reader is ready for any calculations that could be encountered at well control school. It is a great tool for rig crew members who are afraid of calculations or have not done any math since school. I found it easy to follow with clear explanations and it flowed from topic to topic. A definite addition to the rig crews training toolbox. Malcolm Lodge (at the time of writing Technical Director of the Well Control Institute)
The Command Companion of Seamanship Techniques is the latest work from the well-respected marine author, D J House. It contains all the information needed for command posts at sea. * All aspects of shipboard management are discussed, with special emphasis placed on health and safety. * Guidelines on how to respond to accidents and emergencies at sea * Contains the most recent SOLAS revisions and a discussion of marine law to keep you up to date with the latest rules and regulations. In order to aid learning, the book includes a number of worked examples in the text along with questions and answers at the end of chapters. The author tells you how to respond to accidents and emergencies at sea, in the event, for example of cargo contamination, collision, loss of stability due to cargo shift and damage due to flooding, fire plus loss of life/crew. In addition, the SOLAS revisions and a discussion of marine law is included to keep you up to date with all the latest rules and regulations. In order to aid learning, this book will include a number of worked examples in the text along with questions and answers at the end of chapters. D J House is senior lecturer in Nautical studies at the Nautical college, Fleetwood. His sea-going experience includes general cargo, reefer, bulk cargo, passenger and liner trades, underwater operations, and roll-on/roll-off ferries. He is a well-known marine author and has written Seamanship Techniques Volumes 1 and 2 (combined) and he has revised Cargo Work in the Kemp & Young series.
Marine Structural Design is a wide-ranging, practical guide to marine structural analysis and design, describing in detail the application of modern structural engineering principles to marine and offshore structures. Organized in five parts, the book covers basic structural design principles, strength, fatigue and fracture, reliability and risk assessment, providing all the knowledge needed for limit-state design and re-assessment of existing structures while assisting engineers in determining material and inspection requirements. Updates to this edition include: New chapters on structural
health monitoring and risk-based decision making. New sections on
arctic marine structural development. Addition of new LNG ship
topics, including composite materials and structures, uncertainty
analysis and green ship concepts. Provides the structural design principles, background theory and know-how needed for marine and offshore structural design by analysis. Covers strength, fatigue and fracture, reliability and risk assessment together in one resource, with the emphasis on practical considerations and applications. Updates to this edition include new chapters on structural health monitoring and risk-based decision making, and new content on arctic marine structural design. "
This book primarily focuses on methodologies to enable marine structures to resist high velocity impact loadings. It is based on invited talks presented at the recent India-USA workshop on "Recent Advances in Blast Mitigation Strategies in Civil and Marine Composite Structures" The book comprises content from top researchers from India and the USA and covers various aspects of the topic, including modeling and simulation, design aspects, experimentation and various challenges. These failure modes significantly reduce the structural integrity of the marine structures unless they are designed to resist such harsh loadings. Understanding the mechanics of these structures under harsh loadings is still an open area of research, and the behavior of these structures is not fully understood. The book highlights efforts to reduce the effects of blast loadings on marine composite structures. Intended for researchers/scientists and practicing engineers, the book focuses not only the design and analysis challenges of marine composite structures under such harsh loading conditions, but also provides new design guidelines.
"Offshore Operation Facilities: Equipment and Procedures"
provides new engineers with theknowledgeand methods that will
assist them in maximizing efficiency while minimizing cost and
helps them prepare for the many operational variables involved in
offshore operations. This book clearly presents the working
knowledge of subsea operations and demonstrates how to
optimizeoperations offshore.The first half of the book covers the
fundamental principles governing offshore engineering structural
design, as well as drilling operations, procedures, and equipment.
The second part includescommon challengesof deep water oil and gas
engineering as well as beach (shallow)oil engineering, submarine
pipeline engineering, cable engineering, and safety system
engineering. Many examples are included from various offshore
locations, with special focus on offshore China operations. In the
offshore petroleum engineering industry, the ability to maintain a
profitable business depends on the efficiency and reliability of
the structure, the equipment, and the engineer. "Offshore Operation
Facilities: Equipment and Procedures" assists engineers in meeting
consumer demand while maintaining a profitable operation.
This book focuses on advanced methods for the structural and thermal analysis of deepwater pipelines and risers. It discusses the limit strength of sandwich pipes, including finite-element analysis using Python scripts, collapse of sandwich pipes with cementitious/polymer composites, buckle propagation of sandwich pipes, dynamic behavior of subsea pipes, flow-induced vibration of functionally graded pipes, two-phase flow-induced vibration of pipelines, vortex-induced vibration of free-spanning pipelines, and the thermal analysis of composites pipes with passive insulation, active heating, and phase change material layers. It also explores structural analysis using finite element analysis and the integral transform technique for fluid-structure interaction. Lastly, the use of lumped parameter formulations combined with finite differences for the thermal analysis of pipelines is examined.
This is the first statistics text to address the unique issues the Marine Affairs professional and student must confront. Marine and coastal resource management is unique in that problem solutions increasingly demand an interdisciplinary approach using data from both the social and natural sciences. This is the first statistics text that addresses marine resource problems using both non-parametric and parametric techniques in a non-intimidating fashion. This is the first statistics text that addresses the unique issues the Marine Affairs professional and student must confront. Since so many of the problems faced by environmental managers are interdisciplinary, involving data and information from a host of disciplines including both natural and social sciences, this volume includes a selected number of both parametric and non-parametric statistical models. The selection of methods has been guided by the type of problems Marine Affairs professionals deal with on a day-to-day basis. The text is written for the non-mathematical reader who may have little or no prior experience in statistics or advanced mathematics. Each chapter is divided into two sections, one which describes the method, followed by one or two fully worked out examples, and concludes with a lab for student use. This volume will be of value to students and professionals involved with the description, analysis, and evaluation of coastal and marine resource issues.
A marine engineer will need to have a broad background of knowledge within several aspects of marine design and operations. These aspects relate to the design of facilities for offshore applications and evaluation of operational conditions for marine installation and modification/maintenance works. Such needs arise in the marine industries, in the offshore oil and gas industry as well as in the offshore renewable industry. Developed from knowledge gained throughout the author's engineering career, this book covers several of the themes where engineers need knowledge and also serves as a teaser for those who will go into more depth on the different thematic aspects discussed. Details of qualitative risk analysis, which is considered an excellent tool to identify risks in marine operations, are also included. The book is the author's attempt to develop a text for those in marine engineering science who like a practical and solid mathematical approach to marine engineering.It is the intention that the book can serve as an introductory textbook for master degree courses in marine sciences and be of inspiration for teachers who will extend the course into specialisation courses on stability of vessels, higher order wave analysis, nonlinear motions of vessels, arctic offshore engineering, etc. The book could also serve as a handbook for PhD students and researchers who need a handy introduction to solving marine technology related problems.
This book describes the history and development of marine power plant. Problems of arrangement, general construction and parameters of marine power plants of all types are considered. It also introduces different characteristics of each type of marine power plant, matching characteristic for diesel propulsion. The book gives a clear idea about different marine power engines, including working principle, structure and application. Readers will understand easily the power system for ships since there are a lot of illustrations and instructions for each of the equipment. This book is useful for students majoring in "marine engineering", "energy and power engineering" and other related majors. It is also useful for operators of marine institution for learning main design and operation of ship plants.
"Porous Models for Wave-seabed Interactions" discusses the Phenomenon of wave-seabed interactions, which is a vital issue for coastal and geotechnical engineers involved in the design of foundations for marine structures such as pipelines, breakwaters, platforms, etc. The most important sections of this book will be the fully detailed theoretical models of wave-seabed interaction problem, which are particularly useful for postgraduate students and junior researchers entering the discipline of marine geotechnics and offshore engineering. This book also converts the research outcomes of theoretical studies to engineering applications that will provide front-line engineers with practical and effective tools in the assessment of seabed instability in engineering design. Prof. Dong-Sheng Jeng works at Shanghai Jiao Tong University, China.
This book presents a comprehensive topical overview on soil dynamics and foundation modeling in offshore and earthquake engineering. The spectrum of topics include, but is not limited to, soil behavior, soil dynamics, earthquake site response analysis, soil liquefactions, as well as the modeling and assessment of shallow and deep foundations. The author provides the reader with both theory and practical applications, and thoroughly links the methodological approaches with engineering applications. The book also contains cutting-edge developments in offshore foundation engineering such as anchor piles, suction piles, pile torsion modeling, soil ageing effects and scour estimation. The target audience primarily comprises research experts and practitioners in the field of offshore engineering, but the book may also be beneficial for graduate students.
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
This is the first textbook to address quantified risk assessment (QRA) as specifically applied to offshore installations and operations. As the first part of the two-volume updated and expanded fourth edition, it adds a new focus on the EU Offshore Safety Directive, and discusses the new perspective on risk from the Norwegian Petroleum Safety Authority, followed by new and updated international standards. New safety statistics for the Norwegian sectors are presented, as well as new case studies on international offshore accidents, such as the explosion on FPSO Sao Mateus in 2015, which involved 9 fatalities. Separate chapters analyse the main hazards for offshore structures: fire, explosion, collision, and falling objects, as well as structural and marine hazards. Risk mitigation and control are discussed, as well as how the results of quantitative risk assessment studies should be presented. The fourth edition presents updated hydrocarbon release statistics, together with new methods for modelling the risk from ignited hydrocarbon releases. There have been recent advances in the modelling of collision risk from passing and attending vessels, based on extensive research; these advances are described in detail, in addition to new developments in the safety of Dynamic Positioning vessels. In closing, the book provides updated statistics and lessons learned from accidents involving offshore helicopter transportation of personnel. The book offers a comprehensive reference guide for academics and students of marine/offshore risk assessment and management. It will also be of interest to professionals in the industry, as well as contractors, suppliers, consultants and regulatory authorities. |
![]() ![]() You may like...
The National Medals of the United States…
Richard Meredith McSherry
Paperback
R525
Discovery Miles 5 250
Wireless Technology - Applications…
Steven Powell, J.P. Shim
Hardcover
R4,505
Discovery Miles 45 050
|