![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Cryocoolers 10 is the premier archival publication of the latest advances and performance of small cryogenic refrigerators designed to provide localized cooling for military, space, semi-conductor, medical, computing, and high-temperature superconductor cryogenic applications in the 2-200 K temperature range. Composed of papers written by leading engineers and scientists in the field, Cryocoolers 10 reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.
Flat and Corrugated Diaphragm Design Handbook provides simple, useful methods for diaphragmdesign, performance evaluation, and material selection. The text is a practical andcomplete guide to solving on-the-job problems faced by instrument designers; structural engineersdesigning plates, panels, and floors; and mechanical engineers designing flexural pivots,couplings, and elastic elements.A leading design engineer has written this authoritative reference for the benefit of his colleaguesin the engineering community. Each chapter is user-oriented and features clear, stepby-step techniques which are easily translated into improved diaphragm design. The text includesa simple algebraic presentation of performance characteristics, and computer results ofspecific shapes, profiles, and corrugation depths. Special topics, such as the use of diaphragmsas pressure summing devices and the design of semiconductor diaphragms for solid state transducers,receive outstanding coverage in this book. Each discussion contains many detailed examplesand illustrations.Flat and Corrugated Diaphragm Design Handbook is a vital addition to both the workbenchand the library of every practicing design engineer. This volume is also an excelJent textbookfor a course on instrument design and application for senior-level engineering students.
Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered.
Explores SMS as it is implemented in aviation based on examples from several countries and regions, namely the UK, USA, and Australia. Presents a socio-historical analysis of how SMSs emerged in high-risk industries. Provides insights to explain the existing limitations of SMS. Proposes new avenues to reach beyond the limitations of SMS. Discusses the COVID-19 pandemic within the framework of risk analysis.
The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. In recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.
This book offers invaluable insights about the full spectrum of core design course contents systematically and in detail. This book is for instructors and students who are involved in teaching and learning of 'capstone senior design projects' in mechanical engineering. It consists of 17 chapters, over 300 illustrations with many real-world student project examples. The main project processes are grouped into three phases, i.e., project scoping and specification, conceptual design, and detail design, and each has dedicated two chapters of process description and report content prescription, respectively. The basic principles and engineering process flow are well applicable for professional development of mechanical design engineers. CAD/CAM/CAE technologies are commonly used within many project examples. Thematic chapters also cover student teamwork organization and evaluation, project management, design standards and regulations, and rubrics of course activity grading. Key criteria of successful course accreditation and graduation attributes are discussed in details. In summary, it is a handy textbook for the capstone design project course in mechanical engineering and an insightful teaching guidebook for engineering design instructors.
This book presents a study of computer-aided machine design and explains the fundamental concepts of kinematics and machine element design in lay terms. It is useful for those concerned with developing new programs in computer-aided design, in both industry and education.
In today's competitive climate the economies of production have become a critical factor for all manufacturing companies. For this reason, achieving cost-effective plant maintenance is highly important. In this context monitoring plays a vital role. The purpose of this book is to inform readers about techniques currently available in the field of condition monitoring, and the methodology used in their application. With contributions from experts throughout the world, the Handbook of Condition Monitoring addresses the four major technique areas in condition monitoring in addition to the latest developments in condition monitoring research. Significantly, the Handbook of Condition Monitoring includes the following features: comprehensive coverage of the full range of techniques and methodologies accepted knowledge and new developments both technical and managerial content. This is the essential reference book for maintenance technicians, engineers, managers and researchers as well as graduate students involved in manufacturing and mechanical engineering, and condition monitoring.
Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective reports and encourages technology transfer in the field of cooperative control of multi-agent systems. The book deals with UGVs, UAVs, UUVs and spacecraft, and more. It presents an extended exposition of the authors' recent work on all aspects of multi-agent technology. Modelling and cooperative control of multi-agent systems are topics of great interest, across both academia (research and education) and industry (for real applications and end-users). Graduate students and researchers from a wide spectrum of specialties in electrical, mechanical or aerospace engineering fields will use this book as a key resource.
This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
This book presents the proceedings of the 4th International Conference of IFToMM ITALY (IFIT), held in Naples, Italy on September 7-9, 2022. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
This book presents a straightforward introduction to the finite element method, error analysis, and adaptive refinement. It provides an easy-to-read overview that allows the contents of other finite element books and finite element courses to be seen in perspective as the various procedures are encountered. Furthermore, it provides developments that improve the procedures contained in the standard finite element textbook. As a result, when this book is used alone or in conjunction with other presentations, the reader is capable of critically assessing the capabilities of the finite element method.
Practical MEMS focuses on analyzing the operational principles of microsystems. The salient features of the book include: Tutorial approach. The book emphasizes the design and analysis through over 100 calculated examples covering all aspects of MEMS design. Emphasis on design. This book focuses on the microdevice operation. First, the physical operation principles are covered. Second, the design equations are derived and exemplified. Practical MEMS is a perfect companion to MEMS fabrication textbooks. Quantitative performance analysis. The critical performance parameters for the given application are identified and analyzed. For example, the noise and power performance of piezoresistive and capacitive accelerometers is analyzed in detail. Mechanical, resistive (thermal and 1/f-noise), and circuit noise analysis is covered. Application specifications. Different MEMS applications are compared to commercial design requirements. For example, the optical MEMS is analyzed in the context of bar code scanner, projection displays, and optical cross connect specifications. MEMS economics and market analysis. A full chapter is devoted to yield and cost analysis of microfabricated devices. In addition, the market economics for emerging applications such as RF MEMS is discussed.
This book presents select proceedings of the 1st International Conference on Advances in Mechanical Engineering and Material Science (ICAMEMS 2022). It discusses about the diverse technological advancements, innovations, and achievements in the areas of mechanical engineering and material science. It also covers the developments and challenges in the field of machine design, manufacturing, thermal and fluid engineering. Important topics covered in the conference include advanced manufacturing processes, machining, product design and development, mechatronics and robotics, non-conventional energy resources, green energy and energy harvesting, tribology, materials and characterization. The book also discusses advanced research areas in material science such as smart materials, bio-materials and advanced energy materials. Given the contents, the book will be a valuable reference for students, researchers and industrialists interested in advanced research areas of mechanical engineering and material science.
All engineers and applied scientists will need to harness the power of machine learning to solve the highly complex and data intensive problems now emerging. This text teaches state-of-the-art machine learning technologies to students and practicing engineers from the traditionally "analog" disciplines-mechanical, aerospace, chemical, nuclear, and civil. Dr. McClarren examines these technologies from an engineering perspective and illustrates their specific value to engineers by presenting concrete examples based on physical systems. The book proceeds from basic learning models to deep neural networks, gradually increasing readers' ability to apply modern machine learning techniques to their current work and to prepare them for future, as yet unknown, problems. Rather than taking a black box approach, the author teaches a broad range of techniques while conveying the kinds of problems best addressed by each. Examples and case studies in controls, dynamics, heat transfer, and other engineering applications are implemented in Python and the libraries scikit-learn and tensorflow, demonstrating how readers can apply the most up-to-date methods to their own problems. The book equally benefits undergraduate engineering students who wish to acquire the skills required by future employers, and practicing engineers who wish to expand and update their problem-solving toolkit.
This book examines the fundamentals of vehicle dynamics, as well as the recent trends in the field, such as torque vectoring control, vehicle state estimation, and autonomous vehicles. It investigates the most pressing problems that vehicle dynamics engineers have been facing nowadays, and the challenges of autonomous vehicles in terms of perception, path planning, and analysis of the road environment. The book will serve as a useful tool for graduate students and researchers in vehicle dynamics and control.
To protect the Earth, China has launched its target of peaking carbon dioxide emissions by 2030, and achieving carbon neutrality by 2060 , which greatly encourages the use and development of renewable energy. Supercritical CO2 power cycle is a promising technology and the radial inflow turbine is the most important component of it, whose design and optimisation are considered as great challenges. This book introduces simulation tools and methods for supercritical CO2 radial inflow turbine, including a high fidelity quasi-one-dimensional design procedure, a non-ideal compressible fluid dynamics Riemann solver within open-source CFD software OpenFOAM framework, and a multi-objective Nelder-Mead geometry optimiser. Enhanced one-dimensional loss models are presented for providing a new insight towards the preliminary design of the supercritical CO2 radial inflow turbine. Since the flow phenomena within the blade channels are complex, involving fluid flow, shock wave transmission and boundary layer separation, only employing the ideal gas model is inadequate to predict the performance of the turbine. Thus, a non-ideal compressible fluid dynamics Riemann solver based on OpenFOAM library is developed. This book addresses the issues related to the turbine design and blade optimization and provides leading techniques. Hence, this book is of great value for the readers working on the supercritical CO2 radial inflow turbine and understanding the knowledge of CFD and turbomachinery.
This book proposes "Vibration Utilization Engineering," using harmful vibrations in many cases for energy harvesting. Scope of the book includes, but not limited to, linear and nonlinear system of vibrations, waves (sound wave and light wave), wave motion and energy utilization, the electric-magnetic oscillation utilization in engineering, the phenomena, patterns, and utilization of the vibrations in Nature and human social society. It is all based on the theory of vibration utilization technology and equipment technological process, linear and pseudo-linear vibration, nonlinear vibration. This new subject branch is closely associated with numerus applications in industrial or agricultural production, medical apparatus and equipment and daily life, etc. It could create significant economic and social benefits and provide significant values for society and excellent service for human life.
4. 2 Analysis of induction generator effect: frequency scanning method 83 4. 3 Analysis of torsional interaction(TI) 87 4. 4 State equations and eigenvalue analysis 96 4. 5 An algorithm for computing torsional modes 108 4. 6 Countermeasures for SSR III 4. 7 Torsional oscillations in parallel connected turbine generators 120 121 5. INTERACTIONS WITH POWER SYSTEM STABILIZER 5. 1 Introduction 121 5. 2 Basic concept in the application of PSS 122 5. 3 Design of PSS 126 5. 4 Torsional interaction with PSS 130 5. 5 A case study 132 6. INTERACTIONS WITH HVDC CONVERTER CONTROL 137 6. 1 Introduction 137 6. 2 HVDC converters and control 138 6. 3 Modelling of HVDC system for study of torsional interactions 147 6. 4 Analysis of torsional interactions -A simplified approach 153 6. 5 A case study 156 6. 6 A simplified damping torque analysis 161 6. 7 Control of torsional interaction 167 7. INTERACTIONS WITH SHUNT COMPENSATORS 169 7. 1 Introduction 169 7. 2 Static Var Compensator 171 7 . 3 Torsional Interactions with SVC 186 7. 4 Static Condenser(STATCON) 189 7. 5 Torsional interactions with STATCON 196 7. 6 A simplified analysis of torsional interaction with voltage controller 200 8. INTERACTIONS WITH SERIES COMPENSATORS 205 8. 1 Introduction 205 8. 2 Thyristor Controlled Series Compensator 206 8. 3 Modelling of TCSC for SSR studies 216 8. 4 Mitigation of SSR with TCSC 223 8. 5 Static Synchronous Series Compensator (SSSC) 229 8.
"Nonlinear Oscillations in Mechanical Engineering" explores the effects of nonlinearities encountered in applications in that field. Since the nonlinearities are caused, first of all, by contacts between different mechanical parts, the main part of this book is devoted to oscillations in mechanical systems with discontinuities caused by dry friction and collisions. Another important source of nonlinearity which is covered is that caused by rotating unbalanced parts common in various machines as well as variable inertias occurring in all kinds of crank mechanisms. This book is written for advanced undergraduate and postgraduate students, but it may be also helpful and interesting for both theoreticians and practitioners working in the area of mechanical engineering at universities, in research labs or institutes and especially in the R and D departments within industrial firms.
Up and Running with AutoCAD 2023: 2D and 3D Drawing, Design and Modeling presents a combination of step-by-step instruction, examples and insightful explanations. The book emphasizes core concepts and practical applications of AutoCAD in engineering, architecture and design. Equally useful in instructor-led classroom training, self-study, or as a professional reference, the book is written by a long-time AutoCAD professor and instructor with the user in mind.
This volume describes new insights into the main aspects of rubber degradation by material's fatigue, wear and aging evolution, as well as their impact on mechanical rubber properties. It provides a thorough state-of-art explanation of the essential chemical, physical and mechanical principles as well as practices of material characterization for wear prediction, and to convey or define novel strategies and procedures of planning effective wear test programs. The initiating factors of abrasion, the development of surface abrasion on sharp and blunt tracks (so called cutting and chipping) and the influence of smear and lubricants is also summarized. The volume is of interest to research scientists in related fields from academia and industry.
21st Century Kinematics focuses on algebraic problems in the analysis and synthesis of mechanisms and robots, compliant mechanisms, cable-driven systems and protein kinematics. The specialist contributors provide the background for a series of presentations at the 2012 NSF Workshop. The text shows how the analysis and design of innovative mechanical systems yield increasingly complex systems of polynomials, characteristic of those systems. In doing so, it takes advantage of increasingly sophisticated computational tools developed for numerical algebraic geometry and demonstrates the now routine derivation of polynomial systems dwarfing the landmark problems of even the recent past. The 21st Century Kinematics workshop echoes the NSF-supported 1963 Yale Mechanisms Teachers Conference that taught a generation of university educators the fundamental principles of kinematic theory. As such these proceedings will provide admirable supporting theory for a graduate course in modern kinematics and should be of considerable interest to researchers in mechanical design, robotics or protein kinematics or who have a broader interest in algebraic geometry and its applications.
This book includes best selected, high-quality research papers presented at the International Conference on Intelligent Manufacturing and Energy Sustainability (ICIMES 2021) held at the Department of Mechanical Engineering, Malla Reddy College of Engineering & Technology (MRCET), Maisammaguda, Hyderabad, India, during June 18-19, 2021. It covers topics in the areas of automation, manufacturing technology and energy sustainability and also includes original works in the intelligent systems, manufacturing, mechanical, electrical, aeronautical, materials, automobile, bioenergy and energy sustainability. |
You may like...
|