![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
The Inclusion-Based Boundary Element Method (iBEM) is an innovative numerical method for the study of the multi-physical and mechanical behaviour of composite materials, linear elasticity, potential flow or Stokes fluid dynamics. It combines the basic ideas of Eshelby's Equivalent Inclusion Method (EIM) in classic micromechanics and the Boundary Element Method (BEM) in computational mechanics. The book starts by explaining the application and extension of the EIM from elastic problems to the Stokes fluid, and potential flow problems for a multiphase material system in the infinite domain. It also shows how switching the Green's function for infinite domain solutions to semi-infinite domain solutions allows this method to solve semi-infinite domain problems. A thorough examination of particle-particle interaction and particle-boundary interaction exposes the limitation of the classic micromechanics based on Eshelby's solution for one particle embedded in the infinite domain, and demonstrates the necessity to consider the particle interactions and boundary effects for a composite containing a fairly high volume fraction of the dispersed materials. Starting by covering the fundamentals required to understand the method and going on to describe everything needed to apply it to a variety of practical contexts, this book is the ideal guide to this innovative numerical method for students, researchers, and engineers.
"Dynamic Response of Linear Mechanical Systems: Modeling, Analysis and Simulation" can be utilized for a variety of courses, including junior and senior-level vibration and linear mechanical analysis courses. The author connects, by means of a rigorous, yet intuitive approach, the theory of vibration with the more general theory of systems. The book features: A seven-step modeling technique that helps structure the rather unstructured process of mechanical-system modeling A system-theoretic approach to deriving the time response of the linear mathematical models of mechanical systems The modal analysis and the time response of two-degree-of-freedom systems-the first step on the long way to the more elaborate study of multi-degree-of-freedom systems-using the Mohr circle Simple, yet powerful simulation algorithms that exploit the linearity of the system for both single- and multi-degree-of-freedom systems Examples and exercises that rely on modern computational toolboxes for both numerical and symbolic computations as well as a Solutions Manual for instructors, with complete solutions of a sample of end-of-chapter exercises Chapters 3 and 7, on simulation, include in each "Exercises" section a set of miniprojects that require code-writing to implement the algorithms developed in these chapters
Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.
This book highlights plasma science and technology-related research and development work at institutes and universities networked through Asian African Association for Plasma Training (AAAPT) which was established in 1988. The AAAPT, with 52 member institutes in 24 countries, promotes the initiation and intensification of plasma research and development through cooperation and technology sharing. With 13 chapters on fusion-relevant, laboratory and industrial plasmas for wide range of applications and basic research and a chapter on AAAPT network, it demonstrates how, with collaborations, high-quality, industrially relevant academic and scientific research on fusion, industrial and laboratory plasmas and plasma diagnostics can be successfully pursued in small research labs. These plasma sciences and technologies include pioneering breakthroughs and applications in (i) fusion relevant research in the quest for long-term, clean energy source development using high-temperature, high- density plasmas and (ii) multibillion-dollar, low-temperature, non-equilibrium and thermal industrial plasmas used in processing, synthesis and electronics.
A systematic control of mixture formation with modern high-pressure injection systems enables us to achieve considerable improvements of the combustion pr- ess in terms of reduced fuel consumption and engine-out raw emissions. However, because of the growing number of free parameters due to more flexible injection systems, variable valve trains, the application of different combustion concepts within different regions of the engine map, etc., the prediction of spray and m- ture formation becomes increasingly complex. For this reason, the optimization of the in-cylinder processes using 3D computational fluid dynamics (CFD) becomes increasingly important. In these CFD codes, the detailed modeling of spray and mixture formation is a prerequisite for the correct calculation of the subsequent processes like ignition, combustion and formation of emissions. Although such simulation tools can be viewed as standard tools today, the predictive quality of the sub-models is c- stantly enhanced by a more accurate and detailed modeling of the relevant pr- esses, and by the inclusion of new important mechanisms and effects that come along with the development of new injection systems and have not been cons- ered so far. In this book the most widely used mathematical models for the simulation of spray and mixture formation in 3D CFD calculations are described and discussed. In order to give the reader an introduction into the complex processes, the book starts with a description of the fundamental mechanisms and categories of fuel - jection, spray break-up, and mixture formation in internal combustion engines.
The International Conference on the Theory of Machines and Mechanisms is organized every four years, under the auspices of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM) and the Czech Society for Mechanics. This eleventh edition of the conference took place at the Technical University of Liberec, Czech Republic, 4-6 September 2012. This volume offers an international selection of the most important new results and developments, in 73 papers, grouped in seven different parts, representing a well-balanced overview, and spanning the general theory of machines and mechanisms, through analysis and synthesis of planar and spatial mechanisms, dynamics of machines and mechanisms, linkages and cams, computational mechanics, rotor dynamics, biomechanics, mechatronics, vibration and noise in machines, optimization of mechanisms and machines, control and monitoring systems of machines, accuracy and reliability of machines and mechanisms, robots and manipulators to the mechanisms of textile machines.
Shell structures are widely used in the fields of civil, mechanical, architectural, aeronautical, and marine engineering. Shell technology has been enhanced by the development of new materials and prefabrication schemes. Despite the mechanical advantages and aesthetic value offered by shell structures, many engineers and architects are relatively unacquinted with shell behaviour and design. This book familiarizes the engineering and architectural student, as well as the practicing engineer and architect, with the behaviour and design aspects of shell structures. Three aspects are presented: the Physical behaviour, the structural analysis, and the design of shells in a simple, integrated, and yet concise fashion. Thus, the book contains three major aspects of shell engineering: (1) physical understanding of shell behaviour; (2) use of applied shell theories; and (3) development of design methodologies together with shell design examples. The theoretical tools required for rational analysis of shells are kept at a modest level to give a sound grasp of the fundamentals of shell behaviour and, at the same time, an understanding of the related theory, allowing it to be applied to actual design problems. To achieve a physical understanding of complex shell behaviour, quantitative presentations are supplemented by qualitative discussions so that the reader can grasp the physical feeling' of shell behaviour. A number of analysis and detailed design examples are also worked out in various chapters, making the book a useful reference manual. This book can be used as a textbook and/or a reference book in undergraduate as well as graduate university courses in the fields of civil, mechanical, architectural, aeronautical, and materials engineering. It can also be used as a reference and design-analysis manual for the practicing engineers and architects. The text is supplemented by a number of appendices containing tables of shell analysis and design charts and tables.
This volume contains invited lectures and contributed papers presented at the NATO Advanced Research Workshop on Mathematical Modeling in Combustion and related topics, held in. Lyon (France), April 27 - 30, 1987. This conference was planned to fit in with the two-month visit of Professor G.S.S. Ludford to the Ecole Centrale de Lyon. He kindly agreed to chair the Scientific and Organizing Committee and actively helped to initiate the meeting. His death in December 1986 is an enormous loss to the scientific community in general, and in particular, to the people involved in the present enterprise. The subject of mathematical modeling in combustion is too large for a single conference, and the selection of topics re flects both areas of recent research activity and areas of in terest to Professor G.S.S. Ludford, to whose memory the Advanced Workshop and this present volume are dedicated. The meeting was divided into seven specialized sessions detonation theory, mathematical analysis, numerical treatment of combustion problems, flame theory, experimental and industrial aspects, complex chemistry, and turbulent combustion. It brought together researchers and engineers from University and Industry (see below the closing remarks of the workshop by Prof. N. Peters). The articles in this volume have been judged and accepted on their scientific quality, and language corrections may have been sacrificed in order to allow quick dissemination of knowledge to prevail."
Photovoltaics, the direct conversion of sunlight to electricity, is now the fastest growing technology for electricity generation. Present "first generation" products use the same silicon wafers as in microelectronics. "Second generation" thin-films, now entering the market, have the potential to greatly improve the economics by eliminating material costs. Martin Green, one of the worlds foremost photovoltaic researchers, argues in this book that "second generation" photovoltaics will eventually reach its own material cost constraints, engendering a "third generation" of high performance thin-films. The book explores, self-consistently, the energy conversion potential of advanced approaches for improving photovoltaic performance and outlines possible implementation paths.
This text is an advancement of the theory of vibration protection of mechanical systems with lumped and distributed parameters. The book offers various concepts and methods of solving vibration protection problems, discusses the advantages and disadvantages of different methods, and the fields of their effective applications. Fundamental approaches of vibration protection, which are considered in this book, are the passive, parametric and optimal active vibration protection. The passive vibration protection is based on vibration isolation, vibration damping and dynamic absorbers. Parametric vibration protection theory is based on the Shchipanov-Luzin invariance principle. Optimal active vibration protection theory is based on the Pontryagin principle and the Krein moment method. The book also contains special topics such as suppression of vibrations at the source of their occurrence and the harmful influence of vibrations on humans.< Numerous examples, which illustrate the theoretical ideas of each chapter, are included. This book is intended for graduate students and engineers. It is assumed that a reader has working knowledge of theory of vibrations, differential equations, andcomplex analysis. About the Authors. Igor A Karnovsky, Ph.D., Dr. Sci., is a specialist in structural analysis, theory of vibration and optimal control of vibration. He has 40 years of experience in research, teaching and consulting in this field, and is the author of more than 70 published scientific papers, including two books in Structural Analysis (published with Springer in 2010-2012) and three handbooks in Structural Dynamics (published with McGraw Hill in 2001-2004). He also holds a number of vibration-control-related patents. Evgeniy Lebed, Ph.D., is a specialist in applied mathematics and engineering. He has 10 years of experience in research, teaching and consulting in this field. The main sphere of his research interests are qualitative theory of differential equations, integral transforms and frequency-domain analysis with application to image and signal processing. He is the author of 15 published scientific papers and a US patent (2015).
This book is a concise and readable introductory text on solid mechanics suitable for engineers, scientists and applied mathematicians. It presents the foundations of stress, strain and elasticity theory and consistently employs the use of vectors and (particularly) Cartesian tensor notation. The first chapter introduces vectors with particular emphasis being paid to applications which arise in later chapters. Chapter 2 introduces Cartesian tensors and describes some of their important applications. In particular, finite and infinitessimal rotations are examined as are isotropic tensors and second order symmetric tensors. The last topic of this chapter includes a full discussion on eigenvalues and eigenvectors. There are separate introductions, in Chapters 3 and 4, to stress and strain and to their practical measurement using, respectively, photoelastic methods and strain gauges. In Chapter 5 the concepts of stress and strain are brought together and, in conjunction with Newton's equilibrium equations, used to deduce the basic equations of linear elasticity theory. These fundamental equations are then examined and analyzed by obtaining simple exact solutions, including solutions which describe twisting, bending and stretching of beams. Chapter 6 introduces the fundamental concept of strain enegergy and uses this concept to derive the Kirchoff uniqueness theorem, Rayleigh's reciprocal theorem and the important Castigliano relations. The chapter concludes with a thorough treatment of the theorem of minimum potential energy and examines some of its applications. The final three chapters examine the application of the fundamental equations to the theory of torsion, to structural analysisand to the treatment of two dimensional elastostatics by analytical and approximate (finite element) methods.
This book contains results of more than a decade's effort on coupled deformation and diffusion obtained in research performed at the Institute of Fracture and Solid Mechanics, Lehigh University. Despite the overwhelming number of theories on this subject, little is known on the assessment of coupling effects because of the inherent difficulties associated with experimentation. A case in point is couple thermoelasticity, a theory that has remained virtually unused in practice. This is indicative of the inadequacy of conventional approaches. The interdependence of heat, moisture and deformation arises in many engineer ing problems of practical interest. Whether these effects are coupled or not depend on the transient character of the boundary conditions. Special attention is given to finding the coupling constants. Invoked is the assumption that the physical parameters should be independent of the specified boundary conditions. They can thus be extracted from known experimental data for situations where coupling effects are relatively weak and then applied to predict strong coupling effects as boundary conditions are altered. This is illustrated for the T300/5208 material commonly used in composites and permits a more reliable evaluation of material behaving under extreme environmental conditions. The lack of this knowledge can often be a major deterrent to the achievement of new technological advances. The reader will recognize that the material in this book does not follow the main stream of research on moisture-temperature diffusion and deformation."
Understanding how gears are formed and how they interact or mesh with each other is essential when designing equipment that uses gears or gear trains. The way in which gear teeth are formed and how they mesh is determined by their geometry and kinematics, which is the topic of this book. Gears and Gear Drives provides the reader with comprehensive coverage of gears and gear drives. Spur, helical, bevel, worm and planetary gears are all covered, with consideration given to their classification, geometry, kinematics, accuracy control, load capacity and manufacturing. Cylindrical gear geometry is the basis for dealing with any gear drives, so this is covered in detail. Key features: * Contains hundreds of 2D and 3D figures to illustrate all types of gears and gear drives, including planetary and worm gears * Includes fundamental derivations and explanations of formulae * Enables the reader to know how to carry out accuracy control and load capacity checks for any gear drive * Includes directions for the practical design of gears and gear drives * Covers DIN and ISO standards in the area Gears and Gear Drives is a comprehensive reference for gears and gear drive professionals and graduate students in mechanical engineering departments and covers everything important to know how to design, control and manufacture gear drives.
Like FEM, the Boundary Element Method (BEM) provides a general numerical tool for the solution of complex engineering problems. In the last decades, the range of its applications has remarkably been enlarged. Therefore dynamic and nonlinear problems can be tackled. However they still demand an explicit expression of a fundamental solution, which is only known in simple cases. In this respect, the present book proposes an alternative BEM-formulation based on the Fourier transform, which can be applied to almost all cases relevant in engineering mechanics. The basic principle is presented for the heat equation. Applications are taken from solid mechanics (e.g. poroelasticity, thermoelasticity). Transient and stationary examples are given as well as linear and nonlinear. Completed with a mathematical and mechanical glossary, the book will serve as a comprehensive text book linking applied mathematics to real world engineering problems.
Successfully classroom-tested at the graduate level, Linear Control Theory: Structure, Robustness, and Optimization covers three major areas of control engineering (PID control, robust control, and optimal control). It provides balanced coverage of elegant mathematical theory and useful engineering-oriented results. The first part of the book develops results relating to the design of PID and first-order controllers for continuous and discrete-time linear systems with possible delays. The second section deals with the robust stability and performance of systems under parametric and unstructured uncertainty. This section describes several elegant and sharp results, such as Kharitonov's theorem and its extensions, the edge theorem, and the mapping theorem. Focusing on the optimal control of linear systems, the third part discusses the standard theories of the linear quadratic regulator, Hinfinity and l1 optimal control, and associated results. Written by recognized leaders in the field, this book explains how control theory can be applied to the design of real-world systems. It shows that the techniques of three term controllers, along with the results on robust and optimal control, are invaluable to developing and solving research problems in many areas of engineering.
While ultra-precision machines are now achieving sub-nanometer accuracy, unique challenges continue to arise due to their tight specifications. Written to meet the growing needs of mechanical engineers and other professionals to understand these specialized design process issues, Introduction to Precision Machine Design and Error Assessment places a particular focus on the errors associated with precision design, machine diagnostics, error modeling, and compensation. "Error Assessment and Control" The book begins with a brief overview of precision engineering and applications before introducing error measurements and offering an example of a numerical-controlled machine error assessment. The contributors discuss thermal error sources and transfer, modeling and simulation, compensation, and machine tool diagnostics, and then examine the principles and strategies involved in designing standard-size precision machines. Later chapters consider parallel kinematic machines, the precision control techniques covering linear systems and nonlinear aspects, and various types of drives, actuators, and sensors required for machines. Case studies and numerous diagrams and tables are provided throughout the book to clarify material. "A Window Into the Future of High-Precision Manufacturing" Achieving ultra-high precision in the manufacture of extremely small devices opens up prospects in several diverse and futuristic fields, while at the same time greatly increases our living standards by offering quality and reliability for conventional products and those on the microscale. With contributions by a team of international experts, this work serves as a comprehensive and authoritativereference for professionals aiming to stay abreast of this developing area.
By outlining a new design or the Kuroshio power plant, new approaches to turbine design, anchorage system planning, deep sea marine engineering and power plant operations and maintenance are explored and suggested. The impact on the local environment, particularly in the face of natural disasters, is also considered to provide a well rounded introduction to plan and build a 30MW pilot power plant. Following a literature review, the six chapters of this book propose a conceptual design by focusing on the plant's core technologies and establish the separate analysis logics for turbine design and the relay platforms. This is tempered against the ecological impact of both the construction and operation of the plant. These proposed technologies and plans can be further applied to power generation in other waters such as the Gulf Stream, the East Australian Current the Humboldt Current and the East Africa Coastal Current. Engineers, students and industry professionals are provided with a solid introduction to power plant technology as well as a design with specific real world applications
This volume contains the proceedings of the IUTAM Symposium on Elastohydrodynamics and Microelastohydrodynamics held in Cardiff from 1-3 September 2004. It contains 31 articles by leading researchers in the field. The symposium focused on theoretical, experimental and computational issues in elastohydrodynamic lubrication (EHL) both in relation to smooth surfaces and in situations where the film is of the same order or thinner than the surface roughness (micro-EHL). The last IUTAM Symposium in this general area of contact of deformable bodies was in 1974. The emphasis in the Symposium was upon fundamental issues such as: solution methods; lubricant rheological models, thermal effects; both low and high elastic modulus situations; human and replacement joints; fluid traction; dynamic effects, asperity lubrication and the failure of lubrication; surface fatigue and thermal distress under EHL conditions. The book will be useful to those active in basic elastohydrodynamics research who wish to gain an up-to-date understanding of the subject from leading experts in the field.
First-line managers have to maintain the integrity of facilities, control manufacturing processes, and handle unusual or emergency situations, as well as respond to the pressures of production demand. On a daily basis, they are closest to the operating personnel who may be injured by a process accident, and they are in the best position to spot problem conditions and to act to contain them. This book offers these managers "how-to" information on process safety management program execution in the operations and maintenance departments, recommending technical and administrative process safety activities for the entire life cycle of the plant. Helpful tables and references add to the value of this process safety resource.
|
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Computational Mechanics - New Frontiers…
Prof Valliappan, Prof N Khalili
Hardcover
R8,221
Discovery Miles 82 210
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Power Recovery from Low Grade Heat by…
Ian Smith, Nikola Stosic, …
Hardcover
R3,515
Discovery Miles 35 150
|