![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Tribology is the science of friction, lubrication and wear of moving components. Results obtained from tribology are used to reduce energy losses in friction pro cesses, to reduce material losses due to wear, and to increase the service life of components. Contact Mechanics plays an important role in Tribology. Contact Mechanics studies the stress and strain states of bodies in contact; it is contact that leads to friction interaction and wear. This book investigates a variety of contact problems: discrete contact of rough surfaces, the effect of imperfect elasticity and mechanical inhomogeneity of contacting bodies, models of friction and wear, changes in contact characteristics during the wear process, etc. The results presented in this book were obtained during my work at the Insti tute for Problems in Mechanics of the Russian Academy of Sciences. The first steps of this research were carried out under the supervision of Professor L. A. Galin who taught me and showed me the beauty of scientific research and solutions. Some of the problems included in the book were investigated together with my col leagues Dr. M. N. Dobychin, Dr. O. G. Chekina, Dr. I. A. Soldatenkov, and Dr. E. V. Tor skaya from the Laboratory of Friction and Wear (IPM RAS) and Prof. F. Sadeghi from Purdue University (West Lafayette, USA). I would like to express my thanks to them. I am very grateful to Professor G. M. L."
The importance of safety in any scientific endeavor is never in question. However, when cryogenic temperatures are involved, safety is especially important. In addition to observing the normal precautions, one must also take into account the variations of physical properties that occur at low temperatures. At these tempera tures, some properties not only exhibit large differences from their normal values but also can vary widely over a small temperature range. Before any cryogenic project is started, a thorough knowledge of the possible hazards is necessary. Only in this way can the safest operation be attained. Over the hundred-year history of cryogenic research, this has been shown to be the case. Keeping this requirement in mind is an essential ingredient in the quest for accident-free work. The past four or five decades have seen a great expansion of cryogenic technology. Cryogenic liquids, such as oxygen, nitrogen, hydrogen, and helium, have become commonly used in a number of different applications and are easily available in any part of the United States and, indeed, almost anywhere in the world. Not only are these liquids available, they have become less expensive and also available in ever larger quantities. As quantities increase, so also do the conse quences of mishaps. The future seems to hold promise of ever larger and more widespread use of the common cryogens. Thus, the importance of safety also increases as time progresses."
Theory of mechanisms is an applied science of mechanics that studies the relationship between geometry, mobility, topology, and relative motion between rigid bodies connected by geometric forms. Recently, knowledge in kinematics and mechanisms has considerably increased, causing a renovation in the methods of kinematic analysis. With the progress of the algebras of kinematics and the mathematical methods used in the optimal solution of polynomial equations, it has become possible to formulate and elegantly solve problems. Mechanisms: Kinematic Analysis and Applications in Robotics provides an updated approach to kinematic analysis methods and a review of the mobility criteria most used in planar and spatial mechanisms. Applications in the kinematic analysis of robot manipulators complement the material presented in the book, growing in importance when one recognizes that kinematics is a basic area in the control and modeling of robot manipulators.
This book presents the recently introduced and already widely referred semi-discretization method for the stability analysis of delayed dynamical systems. Delay differential equations often come up in different fields of engineering, like feedback control systems, machine tool vibrations, balancing/stabilization with reflex delay. The behavior of such systems is often counter-intuitive and closed form analytical formulas can rarely be given even for the linear stability conditions. If parametric excitation is coupled with the delay effect, then the governing equation is a delay differential equation with time periodic coefficients, and the stability properties are even more intriguing. The semi-discretization method is a simple but efficient method that is based on the discretization with respect to the delayed term and the periodic coefficients only. The method can effectively be used to construct stability diagrams in the space of system parameters.
Most successful organizations recognize Maintenance Parts and Procurement as a critical success factor to Asset Management Excellence and their fundamental supply chain value proposition. This book works as a guide to all the stakeholders that influence the success of their Maintenance Parts Operation and their enterprise's bottom line. Maintenance Parts Management Excellence: A Holistic Anatomy defines the Maintenance Parts Managements role in Asset Management Excellence and expands on the importance of the Parts Inventory Planner role in an organization. It discusses how to create a unique Maintenance Parts Management Strategy for an organization and offers insights on the multiple strategies needed to create and maintain a Maintenance Parts inventory policy. The book also provides an organized overall approach to creating Maintenance Parts Management Excellence in an enterprise. Executives with an organization responsible for the construction, management, and disposal of all assets classes (plant, equipment, IT assets), consultants responsible for assignments associated with optimizing life cycle decisions for clients, maintenance, and reliability professionals within an organization, will benefit from this professional plus book. Upper-level undergraduate engineering students, as well as graduate students of management who focus on operations management and engineering graduate students addressing issues of maintenance and reliability engineering, may also be interested in this book.
EPD Congress is an annual collection that addresses extraction and processing metallurgy. The papers in this book are drawn from symposia held at the 2016 Annual Meeting of The Minerals, Metals & Materials Society. The 2016 edition includes papers from the following symposia: *Materials Processing Fundamentals *Advanced Characterization Techniques for Quantifying and Modeling Deformation
3D Printing: A Revolutionary Process for Industry Applications examines how some companies have already adopted 3D printing, gives guidance on critical areas such as manufacturing supply, and traces the lifecycle of 3D printing as well as cost drivers and influences. The author leverages his experience in leading engineering firms to bring together an industry-by-industry guide to the potentials of 3D printing for large-scale manufacturing and engineering. The book provides all the skills and insights that a Chief Engineer would need to address complex manufacturing problems in the real-world using 3D printing technology. As 3D printing is a rapidly growing area with the potential to transform industries, the potential for large-scale adoption involves complex systems crossing engineering disciplines. In order to use 3D printing to solve manufacturing problems in this context, an array of expertise and knowledge about technology, suppliers, the uses of 3D printing by industry, 3D printing lifecycle and cost drivers must be assembled. This book accomplishes that by introducing 3D printing technology with specific references to 18 industry sectors.
This is the first book in which problems of electromechanics are considered from the perspective of analytical mechanics. The book includes fundamental results in the theory of non-linear electromechanical systems and will be useful both for researchers, engineers, scholars and graduate students of electromechanical faculties of technical universities. It includes not only theoretical results but also various examples from many industrial applications. A sizeable part of the book is devoted to the general theory of synchronous machines and electro-magnetic exciters of oscillations. The material of the book can be included in courses covering the theory of non-linear oscillations, the theory of electrical machines and other electromechanical devices.
"Vehicle Dynamics and Control" provides a comprehensive coverage of vehicle control systems and the dynamic models used in the development of these control systems. The control system applications covered in the book include cruise control, adaptive cruise control, ABS, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire-road friction coefficient estimation, rollover prevention, and hybrid electric vehicles. In developing the dynamic model for each application, an effort is made to both keep the model simple enough for control system design but at the same time rich enough to capture the essential features of the dynamics. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically. In the second edition of the book, chapters on roll dynamics, rollover prevention and hybrid electric vehicles have been added, and the chapter on electronic stability control has been enhanced. The use of feedback control systems on automobiles is growing rapidly. This book is intended to serve as a useful resource to researchers who work on the development of such control systems, both in the automotive industry and at universities. The book can also serve as a textbook for a graduate level course on Vehicle Dynamics and Control.
This book shows how neural networks are applied to computational mechanics. Part I presents the fundamentals of neural networks and other machine learning method in computational mechanics. Part II highlights the applications of neural networks to a variety of problems of computational mechanics. The final chapter gives perspectives to the applications of the deep learning to computational mechanics.
This engineering dynamics textbook is aimed at beginning graduate students in mechanical engineering and other related engineering disciplines who need training in dynamics as applied to engineering mechanisms. It introduces the formal mathematical development of Lagrangian mechanics (and its corollaries), while solving numerous engineering applications.The author s goal is to instill an understanding of the basic physics required for engineering dynamics, while providing a recipe (algorithm) for the simulation of engineering mechanisms such as robots.The book will be reasonably self-contained so that the practicing engineer interested in this area can also make use of it.This book is made accessible to the widest possible audience by numerous, solved examples and diagrams that apply the principles to real engineering applications. Provides an applied textbook for intermediate/advanced
engineering dynamics courses;
Solar Thermal Conversion Technologies for Industrial Process Heating presents a comprehensive look at the use of solar thermal energy in industrial applications, such as textiles, chemical processing, and food. The successful projects implemented in a variety of industries are shown in case studies, alongside performance assessment methodologies. The book will be useful for researchers, graduate students, and industry professionals with an aim to promote mutual understanding between sectors dealing with solar thermal energy. The book includes various solar thermal energy conversion technologies and new techniques and applications of solar collectors in industrial sectors. Features: Covers the key designs and novel technologies employed in the processing industries. Discusses challenges in the incorporation of the solar thermal system in industrial applications. Explores the techno-economic, environmental impact, and life cycle analysis, with government policies for promoting the system. Includes real-world case studies. Presents chapters written by global experts in the field. The book will be useful for researchers, graduate students, and industry professionals with an aim to promote mutual understanding between sectors dealing with solar thermal energy.
Sandwich structures represent a special form of a laminated composite material or structural elements, where a relatively thick, lightweight and compliant core material separates thin stiff and strong face sheets. The faces are usually made of laminated polymeric based composite materials, and typically, the core can be a honeycomb type material, a polymeric foam or balsa wood. The faces and the core are joined by adhesive bonding, which ensures the load transfer between the sandwich constituent parts. The result is a special laminate with very high bending stiffness and strength to weight ratios. Sandwich structures are being used successfully for a variety of applications such as spacecraft, aircraft, train and car structures, wind turbine blades, boat/ship superstructures, boat/ship hulls and many others. The overall objective of the 7th International Conference on Sandwich Structures (ICSS-7) is to provide a forum for the presentation and discussion of the latest research and technology on all aspects of sandwich structures and materials, spanning the entire spectrum of research to applications in all the fields listed above.
LIOn Delamination of Laminated Composites (a) Fiber-Reinforced Composites Considerable technological advances in the production of high-strength fibers (graphite, boron, etc.) have led to a wide use of light high-strength composite materials (graphite epoxy, boron-epoxy, etc.). It is expedient, to make thin walled composite rods, plates, and shells from such materials. Plates can be made by bonding a set of unidirectional thin fiber layers, Fig.l.l. Such plates are orthotropic, as a rule. A random short-fiber composite is shown in Fig. 1.2. Fiber-reinforced composites are widely used in thin-walled aircraft structures because of their specific high strength. For example, the graphite-epoxy composite is characterized by a unidirectional tensile strength of 1.4 GPa while the density is 1.6 Mg/rrt? . For comparison, we may take a steel (steel 4340) whose corresponding properties are identified by values like 1.2 GPa and 7.8 Mg/rrt? . 1. INTRODUCTION Figure 1.1 2 1.1. On Delamination of Laminated Composites Figure 1.2 3 1. INTRODUCTION It is characteristic for laminated plastic material to possess a fairly low bonding. Therefore, low-velocity impacts and defects in manufacturing lead to local delamination. (b) Linear Problems of Delamination Buckling Delamination can significantly reduce the compressive strength and stiffness of the laminate. Local delamination can be considered as a crack in the bond. Under buckling there appears a high interlaminate stress at the crack edge that leads to a spreading of the crack. Delamination growth can lead to structural instability."
This new edition of an important book in the field of strain gauge technology comprehensively covers all important aspects of and current practice in resistance strain gauge selection, installation, protection, instrumentation and performance.
Summary This bookis an introdU(;tion to the three numerical methodsmost commonly used for the mechanical analysisof deformable solids, namely: * the finite element method(FEM), a particularcaseofGalerkin's method, for the spatial discretisationofsolids; * the linear iteration method(LIM), a generalizationofNewton's method, for solving geometricandmaterial nonlinearities; * the finite difference method (FDM), in fact Newmark's method, for the temporal discretisation oftheproblem. The main reason for this selection is the degree of generality reached by the computerprograms basedon the combinationofthese methods. The originalityofthepresentation lies in the comparable emphasisputon the spatial, temporal and nonlinear dimensions of problem solving. For each dimension, there corresponds one method whose basic principle is exposed. It is then shown how they can be combined in a compact and flexible fonn. Thisjoint investigationofthe three methods leads to a particularly neat global algorithm. It is with this double objectiveof simplicity and unity in mind that this book has been designed. An outline of the book follows. A one-dimensional bar model problem, including all the ingredients necessary for acompletepresentationofthe addressed methods, isdefined in Chapter1. Emphasis is placedon the virtual work principle as an alternative to the.differentialequation ofmotion. Chapters 2, 3 and 4 present the three numerical methods: FEM, LIM and FDM, respectively. Although the presentation relies on a one-dimensional model problem, the fonnalism used is general and directly extendible to two- and three-dimensional situations. The compact combination of the three methods is discussed in detail in Chapter 5, which also contains several sections concerning their computer implementation.
This book sheds light on the development of traditional and advanced optimization methods. Their use in various tradition and non-tradition manufacturing and machining processes for an improved manufacturability is reported. This includes key elements of implementing conventional statistical methods, multi-objective and multi-criteria decision-making methods and evolution of single and multi-target optimization techniques using soft computing to enhance production performance, efficiency and sustainability in manufacturing. The latest research in this area as well as possible avenues of future research are also highlighted.
The symposium was organized with the intention of creating an opportunity for mathematicians and engineers working on nonlinear problems to communicate with each other and exchange experiences in the use of boundary integral methods. The spirit of the symposium is clearly reflected in the papers collected in the volume. Some mathematical issues of boundary integral methods for the solution of nonlinear problems are examined in depth. In addition, several applications to fluid and solid mechanics and heat transfer problems are presented. The reader is given a wide overview of the broad class of applications where boundary integral methods represent a very appealing tool for the analysis of nonlinear problems. |
![]() ![]() You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,743
Discovery Miles 57 430
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R41,352
Discovery Miles 413 520
|