![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Convective heat transfer is the result of fluid flowing between objects of different temperatures. Thus it may be the objective of a process (as in refrigeration) or it may be an incidental aspect of other processes. Intended for graduate students and for researchers entering the field, this text reviews in a concise and unified manner recent contributions to the principles of convective heat transfer for single and multi-phase systems: It summarizes the role of the fundamental mechanism and the governing differential equations, describes approximation schemes and phenomenological models, and examines their solutions and applications. After a review of the basic physics and thermodynamics, the book divides the subject into three parts. Part 1 deals with single-medium transfers, specifically with intraphase transfers in single-phase flows and with intramedium transfers in two-phase flows. Part 2 deals with fluid-solid transfer processes, both in cases where the interface is small and in cases where it is large, as well as liquid-liquid transfer processes. Part 3 considers three media, addressing both liquid-solid-solid and gas-liquid-solid systems. The emphasis on the presence multiple phases and on energy-conversion mechanisms, such as phase changes or chemical reactions, will make this text a valuable reference for practicing engineers. This new edition has been updated throughout and contains new examples and problems.
Biotribology of Natural and Artificial Joints: Reducing Wear Through Material Selection and Geometric Design with Actual Lubrication Mode provides a thorough overview of key issues surrounding the tribological behaviors of both natural and artificial joints, covering methods for optimizing the properties of biomaterials, summarizing the lubrication and contact mechanics of natural and artificial joints, and offering solutions to tribological problems in soft biomaterials and surface failures of materials. Sections cover biomechanics and biotribology of natural and artificial joints, articular cartilage and synovial fluids, methods for improving the tribological properties of artificial joints, and the biotribology of artificial joints with artificial cartilage, regenerated cartilage, and biomimetic design solutions.
This book reports on the state of the art in the field of multiphysics systems. It consists of accurately reviewed contributions to the MMSSD'2014 conference, which was held from December 17 to 19, 2004 in Hammamet, Tunisia. The different chapters, covering new theories, methods and a number of case studies, provide readers with an up-to-date picture of multiphysics modeling and simulation. They highlight the role played by high-performance computing and newly available software in promoting the study of multiphysics coupling effects, and show how these technologies can be practically implemented to bring about significant improvements in the field of design, control and monitoring of machines. In addition to providing a detailed description of the methods and their applications, the book also identifies new research issues, challenges and opportunities, thus providing researchers and practitioners with both technical information to support their daily work and a new source of inspiration for their future research.
Understanding Injection Molds opens up the entire subject of injection mold technology, including numerous special procedures, in a well-grounded and practical way. It is specifically intended for beginners, young professionals, business owners, and engineering students. The chapters are clearly structured and easy to understand. The book is designed so that it provides a complete basic knowledge of injection molds in chronological order as well as day-to-day guidance and advice. The numerous colour figures facilitate a rapid understanding of the content, which is especially helpful to the beginner who wants to learn about injection molds quickly. In the forefront of the description are thermoplastic molds. Divergent processes for thermoset or elastomer molds are explained at the end of each chapter. This book captures the current state of the art, and is written by authors who are specialists in the field. The second edition has been updated and improved throughout.
This volume constitutes the proceedings of the 1997 IUTAM Symposium, where invited researchers in acoustics, aeronautics, elastodynamics, electromagnetics, hydrodynamics, and mathematics discussed non-reflecting computational boundaries. The participants formulated benchmark problems for evaluating computational boundaries, as described in the first article.
The four year undergraduate course in Engineering is loaded with theoretical contents and the students hardly find enough time and opportunity to adequately grasp the physical and practical aspects of application of various engineering theories that are being taught. Therefore, certain practice-oriented knowledge inputs in these years may help them acquire and enhance proficiency in the industrial working systems and processes. This book attempts to provide certain practice-oriented knowledge inputs which may help young mechanical engineers who aspire to make a successful career in engineering goods manufacturing enterprises. The book seeks to provide a combination of Engineering and Production/Manufacturing Management aspects to enable young mechanical engineers to make a confident start at the workplace and eventually ascend to leading positions in the organization. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan and Bhutan)
This thesis introduces novel and significant results regarding the analysis and synthesis of positive systems, especially under l1 and L1 performance. It describes stability analysis, controller synthesis, and bounding positivity-preserving observer and filtering design for a variety of both discrete and continuous positive systems. It subsequently derives computationally efficient solutions based on linear programming in terms of matrix inequalities, as well as a number of analytical solutions obtained for special cases. The thesis applies a range of novel approaches and fundamental techniques to the further study of positive systems, thus contributing significantly to the theory of positive systems, a "hot topic" in the field of control.
Aerial Robotic Workers: Design, Modeling, Control, Vision and Their Applications provides an in-depth look at both theory and practical applications surrounding the Aerial Robotic Worker (ARW). Emerging ARWs are fully autonomous flying robots that can assist human operations through their agile performance of aerial inspections and interaction with the surrounding infrastructure. This book addresses all the fundamental components of ARWs, starting with the hardware and software components and then addressing aspects of modeling, control, perception of the environment, and the concept of aerial manipulators, cooperative ARWs, and direct applications. The book includes sample codes and ROS-based tutorials, enabling the direct application of the chapters and real-life examples with platforms already existing in the market.
This monograph presents approaches to characterize inelastic behavior of materials and structures at high temperature. Starting from experimental observations, it discusses basic features of inelastic phenomena including creep, plasticity, relaxation, low cycle and thermal fatigue. The authors formulate constitutive equations to describe the inelastic response for the given states of stress and microstructure. They introduce evolution equations to capture hardening, recovery, softening, ageing and damage processes. Principles of continuum mechanics and thermodynamics are presented to provide a framework for the modeling materials behavior with the aim of structural analysis of high-temperature engineering components.
Fatigue and wear are the most damaging phenomena affecting machines since they result in some 90% of breakdowns. This tutorial book systematically develops a unified overview, named tribo-fatigue, which aims to address the complex wear-fatigue damages. Tribo-fatigue synthesizes aspects of three disciplines: mechanical fatigue, tribology, and reliability of mechanical systems. Tribo-fatigue opens new perspectives for increasing the durability of machines according to the most important criteria of their serviceability. Detailed damage measurement and wear-fatigue tests that enable engineers to design more durable and reliable systems are developed. The book is intended for advanced students, researchers and engineers.
This book introduces readers to the "Jaya" algorithm, an advanced optimization technique that can be applied to many physical and engineering systems. It describes the algorithm, discusses its differences with other advanced optimization techniques, and examines the applications of versions of the algorithm in mechanical, thermal, manufacturing, electrical, computer, civil and structural engineering. In real complex optimization problems, the number of parameters to be optimized can be very large and their influence on the goal function can be very complicated and nonlinear in character. Such problems cannot be solved using classical methods and advanced optimization methods need to be applied. The Jaya algorithm is an algorithm-specific parameter-less algorithm that builds on other advanced optimization techniques. The application of Jaya in several engineering disciplines is critically assessed and its success compared with other complex optimization techniques such as Genetic Algorithms (GA), Particle Swarm Optimization (PSO), Differential Evolution (DE), Artificial Bee Colony (ABC), and other recently developed algorithms.
The aim of the present book is to show, in a broad and yet deep way, the state of the art in computational science and engineering. Examples of topics addressed are: fast and accurate numerical algorithms, model-order reduction, grid computing, immersed-boundary methods, and specific computational methods for simulating a wide variety of challenging problems, problems such as: fluid-structure interaction, turbulent flames, bone-fracture healing, micro-electro-mechanical systems, failure of composite materials, storm surges, particulate flows, and so on. The main benefit offered to readers of the book is a well-balanced, up-to-date overview over the field of computational science and engineering, through in-depth articles by specialists from the separate disciplines.
During the last decades modelling of inelastic structural behaviour has achieved great attention. Wherever elastic designhas reached its limita sa consequence of increased loading, the related cons titutive rela tions meanwhile have become part of the engineer's practice. However, new materials with complex behaviour, further increasing loads at higher temperatures, as well as the implementation of stronger security demands have led to theconsequence that the preferentially used phenomenological concepts need to be verified and improved continuously. Caused by the a priori non linear character oft he material rela tions, all equations fort he description of every new phenomenon need to be reconsidered. According to this, since about a decade the idea succeeds that constitutive relations which represent material behaviour more re alistically can not only be deduced phe nomenologicallyfrom the laws of continuum mechanics. Sincet he observed behaviour is caused by processes taking place on the microscale, these processes and mechanisms need to be taken into consideration when determining the constitutive relations. The formulation of proper micro macro relations actu ally is one of the main emphases in thermoplasticity in the international research. The intentiono ft he IUTAM Symposium on 'Micro and Macrostructural Aspects of Thermoplasticity', held at the Ruhr University of Bochum, Germany, from August 25 to 29, 1997, wast o bring together eminent scientistsworking i n different fields of thermoplasticity with the aim thatt hey may exchange their ideas and activate this interaction.
A self-contained and systematic development of an aspect of analysis which deals with the theory of fundamental solutions for differential operators, and their applications to boundary value problems of mathematical physics, applied mathematics, and engineering, with the related computational aspects.
Designing satellite structures poses an ongoing challenge as the interaction between analysis, experimental testing, and manufacturing phases is underdeveloped. "Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture & Testing "explains the theoretical and practical knowledge needed to perform design of satellite structures. By layering detailed practical discussions with fully developed examples, "Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture & Testing" provides the missing link between theory and implementation. Computational examples cover all the major aspects of advanced analysis; including modal analysis, harmonic analysis, mechanical and thermal fatigue analysis using finite element method. Test cases are included to support explanations an a range of different manufacturing simulation techniques are described from riveting to shot peening to material cutting. Mechanical design of a satellites structures are covered in three steps: analysis step under design loads, experimental testing to verify design, and manufacturing. Stress engineers, lecturers, researchers and students will find "Finite Element Analysis for Satellite Structures: Applications to Their Design, Manufacture & Testing "a key guide on with practical instruction on applying manufacturing simulations to improve their design and reduce project cost, how to prepare static and dynamic test specifications, and how to use finite element method to investigate in more details any component that may fail during testing. "
This book reports on the latest advances in the analysis of non-stationary signals, with special emphasis on cyclostationary systems. It includes cutting-edge contributions presented at the 7th Workshop on "Cyclostationary Systems and Their Applications," which was held in Grodek nad Dunajcem, Poland, in February 2014. The book covers both the theoretical properties of cyclostationary models and processes, including estimation problems for systems exhibiting cyclostationary properties, and several applications of cyclostationary systems, including case studies on gears and bearings, and methods for implementing cyclostationary processes for damage assessment in condition-based maintenance operations. It addresses the needs of students, researchers and professionals in the broad fields of engineering, mathematics and physics, with a special focus on those studying or working with nonstationary and/or cyclostationary processes.
This book brings together recent developments in the areas of MEMS tribology, novel lubricants and coatings for nanotechnological applications, biomimetics in tribology and fundamentals of micro/nano-tribology. Tribology plays important roles in the functioning and durability of machines at small length scales because of the problems associated with strong surface adhesion, friction, wear etc. Recently, a number of studies have been conducted to understand tribological phenomena at nano/micro scales and many new tribological solutions for MEMS have been proposed.
This book presents recent advances in the application of Lyapunov's method for distributed parameter systems to the control of vibration and noise. The material is appropriate for graduate and advanced undergraduate students as well as academic and industrial researchers in engineering and mathematics. The book uses detailed examples to introduce modeling, control theory, and mechatronic implementation for distributed vibration and noise applications. Adaptive, output feedback controllers are shown to asymptotically stabilize distributed vibration and noise and to learn system parameters. Visual feedback control using high speed video and setpoint regulation for systems with rigid body modes are presented. The book provides readers with the tools to model distributed vibration and noise systems, design model-based controllers that guarantee stability and robustness, and implement the controllers with the appropriate sensing, actuation, and control hardware and software.
The International Symposia on Distributed Autonomous Robotic Systems (DARS) started at Riken, Japan in 1992. Since then, the DARS symposia have been held every two years: in 1994 and 1996 in Japan (Riken, Wako), in 1998 in Germany (Karlsruhe), in 2000 in the USA (Knoxville, TN), in 2002 in Japan (Fukuoka), in 2004 in France (Toulouse), and in 2006 in the USA (Minneapolis, MN). The 9th DARS symposium, which was held during November 17-19 in T- kuba, Japan, hosted 84 participants from 13 countries. The 48 papers presented there were selected through rigorous peer review with a 50% acceptance ratio. Along with three invited talks, they addressed the spreading research fields of DARS, which are classifiable along two streams: theoretical and standard studies of DARS, and interdisciplinary studies using DARS concepts. The former stream includes multi-robot cooperation (task assignment methodology among multiple robots, multi-robot localization, etc.), swarm intelligence, and modular robots. The latter includes distributed sensing, mobiligence, ambient intelligence, and mul- agent systems interaction with human beings. This book not only offers readers the latest research results related to DARS from theoretical studies to application-oriented ones; it also describes the present trends of this field. With the diversity and depth revealed herein, we expect that DARS technologies will flourish soon.
The availability of computers has, in real terms, moved forward the practice of structural engineering. Where it was once enough to have any analysis given a complex configuration, the profession today is much more demanding. How engineers should be more demanding is the subject of this book. In terms of the theory of structures, the importance of geometric nonlinearities is explained by the theorem which states that "In the presence of prestress, geometric nonlinearities are of the same order of magnitude as linear elastic effects in structures. " This theorem implies that in most cases (in all cases of incremental analysis) geometric nonlinearities should be considered. And it is well known that problems of buckling, cable nets, fabric structures, ... REQUIRE the inclusion of geometric nonlinearities. What is offered in the book which follows is a unified approach (for both discrete and continuous systems) to geometric nonlinearities which incidentally does not require a discussion of large strain. What makes this all work is perturbation theory. Let the equations of equilibrium for a system be written as where P represents the applied loads, F represents the member forces or stresses, and N represents the operator which describes system equilibrium.
Machining of Metal Matrix Composites provides the fundamentals and recent advances in the study of machining of metal matrix composites (MMCs). Each chapter is written by an international expert in this important field of research. Machining of Metal Matrix Composites gives the reader information on machining of MMCs with a special emphasis on aluminium matrix composites. Chapter 1 provides the mechanics and modelling of chip formation for traditional machining processes. Chapter 2 is dedicated to surface integrity when machining MMCs. Chapter 3 describes the machinability aspects of MMCs. Chapter 4 contains information on traditional machining processes and Chapter 5 is dedicated to the grinding of MMCs. Chapter 6 describes the dry cutting of MMCs with SiC particulate reinforcement. Finally, Chapter 7 is dedicated to computational methods and optimization in the machining of MMCs. Machining of Metal Matrix Composites can serve as a useful reference for academics, manufacturing and materials researchers, manufacturing and mechanical engineers, and professionals involved with MMC applications. It can also be used to teach modern manufacturing engineering or as a textbook for advanced undergraduate and postgraduate engineering courses in machining, manufacturing or materials. |
![]() ![]() You may like...
Handbook of Distributed Sensor Networks…
Marvin Heather
Hardcover
Computer Architecture: A Minimalist…
William F. Gilreath, Phillip A Laplante
Hardcover
R4,483
Discovery Miles 44 830
Programming Environments for Massively…
K.M. Decker, R. M Rehmann
Hardcover
R2,604
Discovery Miles 26 040
Parallel Programming in OpenMP
Rohit Chandra, Ramesh Menon, …
Paperback
R1,482
Discovery Miles 14 820
Tools and Environments for Parallel and…
Amr Zaky, Ted Lewis
Hardcover
R4,530
Discovery Miles 45 300
|