![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
This book describes the concepts and methods of a discipline called design assurance, and reveals many nontechnical aspects that are necessary for getting the work done in an engineering department. It is helpful to engineers and their managers in understanding and using design assurance techniques.
This book, a survey of current practices in both planning and computer aids, is largely confined to space projections, block and detailed layout planning, material flow analysis, plan and elevation drawings-the core activities of most facilities planners.
"Design Rules for Actuators in Active Mechanical Systems" deals with the formulation of model-based design rules to be used in the conception of optimized mechatronic and adaptronic systems. The book addresses the comparison of different actuator classes for given applications and offers answers to the following questions: What is the relationship between actuator geometry and primary output quantities? How scalable are actuators based on the same principle? How are energetic output quantities (work and power) related to mechanical load and geometry? How should actuators be designed and sized to obtain the best performance for the chosen actuator kind, and for a given application? "Design Rules for Actuators in Active Mechanical Systems" will be of use to industry professionals, such as actuator and machine designers, as well as to researchers and students of mechanical engineering, mechatronics, and electrical engineering.
Radiative Heat Transfer, Fourth Edition is a fully updated, revised and practical reference on the basic physics and computational tools scientists and researchers use to solve problems in the broad field of radiative heat transfer. This book is acknowledged as the core reference in the field, providing models, methodologies and calculations essential to solving research problems. It is applicable to a variety of industries, including nuclear, solar and combustion energy, aerospace, chemical and materials processing, as well as environmental, biomedical and nanotechnology fields. Contemporary examples and problems surrounding sustainable energy, materials and process engineering are an essential addition to this edition.
This book presents the proceedings of the 6th IFToMM Asian Mechanisms and Machine Science Conference (Asian MMS), held in Hanoi, Vietnam on December 15-18, 2021. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
The 1993 International Cryogenic Materials Conference (ICMC) was held at the Albuquer- que Convention Center in Albuquerque, New Mexico in conjunction with the Cryogenic Engi- neering Conference (CEC) on July 12-16. The interdependent subjects of the two conferences attracted more than eight hundred participants, who came to share the tatest advances in low- temperature materials science and technology. They also came for the important byproducts of the conferences: identification of new research areas, exploration of collaborative research possi- bilities, and the establishment and renewal of professional relationships. K. Theodore Hartwig (Texas A&M University), asChairman ofthe 1993 ICMC; T. Scott Kreilick (Hudson International Conductors), as Program Chairman; and thirteen other Program Committee members expertly arranged the ICMC sessions and activities. The contributions of the CEC board and its Conference Chairman Walter F. Stewart of the Los Alamos National Laboratory (LANL) were centrat to the organization ofthe tenth CEC/ICMC, which was hosted by LANL. The local arrangements and management, under the skillful guidance of Jan C. Hull (LANL), were exemplary. Frederick Edeskuty (LANL) served as Exhibits Chairman, and L. Kim Nguyen (LANL), as Conference Support Liaison.
This book aims to provide a valuable source, which focuses on interdisciplinary methods and affiliate research in the area of Geometric Modeling and Graphics. It aims to provide the user community with a variety of Geometric Modeling techniques, applications, systems and tools necessary for various real life problems in areas such as Designing objects, Medical Visualization, Scientific Data Visualization, Archaeology, Toon Rendering, Virtual Reality, Body Simulation, etc. It also aims to collect and disseminate information from various disciplines including Curve and Surface Fitting, Geometric Algorithms, Scientific Visualization, Shape Abstraction and Modeling, Intelligent CAD Systems, Computational Geometry, Solid Modeling, Shape Analysis and Description, Medical and Industrial Applications. The major goal of this book is to stimulate views and provide a source where researchers and practitioners can find the latest developments in the field of Geometric Modeling and related practical issues. The book is useful for researchers, practicing engineers, computer scientists, and many others who seek state of the art techniques, applications, systems and tools for Geometric Modeling and Graphics. The book will be a useful source of ideas and techniques for those who seek further research and practice in the development and applications of Computer Aided Geometric Modeling. The introduction to various techniques and applications, together with the developed systems and tools, may serve to stimulate the interest of undergraduate senior students as well as graduate students in the areas of Computer Science, Engineering, and Mathematics. The book consists of twenty-two well documented chapters distributed in three sections of Geometric Modeling Techniques, Applications, Systems and Tools.
The articles that comprise this distinguished annual volume for the Advances in Mechanics and Mathematics series have been written in honor of Gilbert Strang, a world renowned mathematician and exceptional person. Written by leading experts in complementarity, duality, global optimization, and quantum computations, this collection reveals the beauty of these mathematical disciplines and investigates recent developments in global optimization, nonconvex and nonsmooth analysis, nonlinear programming, theoretical and engineering mechanics, large scale computation, quantum algorithms and computation, and information theory.
This book extends the conventional two-dimensional (2D) magnet arrangement into 3D pattern for permanent magnet linear machines for the first time, and proposes a novel dual Halbach array. It can not only effectively increase the radial component of magnetic flux density and output force of tubular linear machines, but also significantly reduce the axial flux density, radial force and thus system vibrations and noises. The book is also the first to address the fundamentals and provide a summary of conventional arrays, as well as novel concepts for PM pole design in electric linear machines. It covers theoretical study, numerical simulation, design optimization and experimental works systematically. The design concept and analytical approaches can be implemented to other linear and rotary machines with similar structures. The book will be of interest to academics, researchers, R&D engineers and graduate students in electronic engineering and mechanical engineering who wish to learn the core principles, methods, and applications of linear and rotary machines.
This book covers several research outcomes of various fields and schools related to maritime operation, applications and materials science. Thirty-four research papers have been compiled from the 2nd International Conference on Marine and Advanced Technologies 2021 (ICMAT 2021) which was organized by the Research and Innovation Section of the Universiti Kuala Lumpur-MIMET. The chapters were written by experienced lecturers from various universities in Malaysia discussing various topics and sub-topics related to maritime engineering and materials science. These chapters portray the actual knowledge on the latest developments and trends of technologies in maritime industries.
Written by an engineering consultant with over 48 years of experience in the field, this Second Edition provides a reader-friendly and thorough discussion of the fundamental principles and science of cryogenic engineering including the properties of fluids and solids, refrigeration and liquefaction, insulation, instrumentation, natural gas processing, and safety in cryogenic system design.
This book is concerned with the static and dynamic analysis of structures. Specifi cally, it uses the stiffness formulated matrix methods for use on computers to tackle some of the fundamental problems facing engineers in structural mechanics. This is done by covering the Mechanics of Structures, its rephrasing in terms of the Matrix Methods, and then their Computational implementation, all within a cohesivesetting. Although this book is designed primarily as a text for use at the upper-undergraduate and beginning graduate level, many practicing structural engineers will find it useful as a reference and self-study guide. Several dozen books on structural mechanics and as many on matrix methods are currently available. A natural question to ask is why another text? An odd devel opment has occurred in engineering in recent years that can serve as a backdrop to why this book was written. With the widespread availability and use of comput ers, today's engineers have on their desk tops an analysis capability undreamt of by previous generations. However, the ever increasing quality and range of capabilities of commercially available software packages has divided the engineering profession into two groups: a small group of specialist program writers that know the ins and outs of the coding, algorithms, and solution strategies; and a much larger group of practicing engineers who use the programs. It is possible for this latter group to use this enormous power without really knowing anything of its source."
Cryocoolers 10 is the premier archival publication of the latest advances and performance of small cryogenic refrigerators designed to provide localized cooling for military, space, semi-conductor, medical, computing, and high-temperature superconductor cryogenic applications in the 2-200 K temperature range. Composed of papers written by leading engineers and scientists in the field, Cryocoolers 10 reports the most recent advances in cryocooler development, contains extensive performance test results and comparisons, and relates the latest experience in integrating cryocoolers into advanced applications.
Flat and Corrugated Diaphragm Design Handbook provides simple, useful methods for diaphragmdesign, performance evaluation, and material selection. The text is a practical andcomplete guide to solving on-the-job problems faced by instrument designers; structural engineersdesigning plates, panels, and floors; and mechanical engineers designing flexural pivots,couplings, and elastic elements.A leading design engineer has written this authoritative reference for the benefit of his colleaguesin the engineering community. Each chapter is user-oriented and features clear, stepby-step techniques which are easily translated into improved diaphragm design. The text includesa simple algebraic presentation of performance characteristics, and computer results ofspecific shapes, profiles, and corrugation depths. Special topics, such as the use of diaphragmsas pressure summing devices and the design of semiconductor diaphragms for solid state transducers,receive outstanding coverage in this book. Each discussion contains many detailed examplesand illustrations.Flat and Corrugated Diaphragm Design Handbook is a vital addition to both the workbenchand the library of every practicing design engineer. This volume is also an excelJent textbookfor a course on instrument design and application for senior-level engineering students.
Many materials or media in nature and technology possess a microstructure which determines their macroscopic behaviour. The knowledge of the relevant mechanisms is often more comprehensive on the micro than on the macro scale. On the other hand, not all information on the micro level is relevant for the understanding of this macro behaviour. Therefore, averaging and homogenization methods are needed to select only the specific information from the micro scale, which influences the macro scale. These methods also open the possibility to design or to influence microstructures with the objective to optimize their macro behaviour. This book presents the development of new methods in this interdisciplinary field of macro- micro-interactions of different engineering branches like mechanical and process engineering, applied mathematics, theoretical, and computational physics. In particular, solids with microstructures and particle systems are considered.
Explores SMS as it is implemented in aviation based on examples from several countries and regions, namely the UK, USA, and Australia. Presents a socio-historical analysis of how SMSs emerged in high-risk industries. Provides insights to explain the existing limitations of SMS. Proposes new avenues to reach beyond the limitations of SMS. Discusses the COVID-19 pandemic within the framework of risk analysis.
The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. In recent years, composite materials have grown in strength, stature, and significance to become a key material of enhanced scientific interest and resultant research into understanding their behavior for selection and safe use in a wide spectrum of technology-related applications. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.
This book offers invaluable insights about the full spectrum of core design course contents systematically and in detail. This book is for instructors and students who are involved in teaching and learning of 'capstone senior design projects' in mechanical engineering. It consists of 17 chapters, over 300 illustrations with many real-world student project examples. The main project processes are grouped into three phases, i.e., project scoping and specification, conceptual design, and detail design, and each has dedicated two chapters of process description and report content prescription, respectively. The basic principles and engineering process flow are well applicable for professional development of mechanical design engineers. CAD/CAM/CAE technologies are commonly used within many project examples. Thematic chapters also cover student teamwork organization and evaluation, project management, design standards and regulations, and rubrics of course activity grading. Key criteria of successful course accreditation and graduation attributes are discussed in details. In summary, it is a handy textbook for the capstone design project course in mechanical engineering and an insightful teaching guidebook for engineering design instructors.
This book presents a study of computer-aided machine design and explains the fundamental concepts of kinematics and machine element design in lay terms. It is useful for those concerned with developing new programs in computer-aided design, in both industry and education.
In today's competitive climate the economies of production have become a critical factor for all manufacturing companies. For this reason, achieving cost-effective plant maintenance is highly important. In this context monitoring plays a vital role. The purpose of this book is to inform readers about techniques currently available in the field of condition monitoring, and the methodology used in their application. With contributions from experts throughout the world, the Handbook of Condition Monitoring addresses the four major technique areas in condition monitoring in addition to the latest developments in condition monitoring research. Significantly, the Handbook of Condition Monitoring includes the following features: comprehensive coverage of the full range of techniques and methodologies accepted knowledge and new developments both technical and managerial content. This is the essential reference book for maintenance technicians, engineers, managers and researchers as well as graduate students involved in manufacturing and mechanical engineering, and condition monitoring.
Cooperative Control of Multi-Agent Systems: An Optimal and Robust Perspective reports and encourages technology transfer in the field of cooperative control of multi-agent systems. The book deals with UGVs, UAVs, UUVs and spacecraft, and more. It presents an extended exposition of the authors' recent work on all aspects of multi-agent technology. Modelling and cooperative control of multi-agent systems are topics of great interest, across both academia (research and education) and industry (for real applications and end-users). Graduate students and researchers from a wide spectrum of specialties in electrical, mechanical or aerospace engineering fields will use this book as a key resource.
This scholarly text provides an introduction to the numerical methods used to model partial differential equations, with focus on atmospheric and oceanic flows. The book covers both the essentials of building a numerical model and the more sophisticated techniques that are now available. Finite difference methods, spectral methods, finite element method, flux-corrected methods and TVC schemes are all discussed. Throughout, the author keeps to a middle ground between the theorem-proof formalism of a mathematical text and the highly empirical approach found in some engineering publications. The book establishes a concrete link between theory and practice using an extensive range of test problems to illustrate the theoretically derived properties of various methods. From the reviews: "...the books unquestionable advantage is the clarity and simplicity in presenting virtually all basic ideas and methods of numerical analysis currently actively used in geophysical fluid dynamics." Physics of Atmosphere and Ocean
This book presents the proceedings of the 4th International Conference of IFToMM ITALY (IFIT), held in Naples, Italy on September 7-9, 2022. It includes peer-reviewed papers on the latest advances in mechanism and machine science, discussing topics such as biomechanical engineering, computational kinematics, the history of mechanism and machine science, gearing and transmissions, multi-body dynamics, robotics and mechatronics, the dynamics of machinery, tribology, vibrations, rotor dynamics and vehicle dynamics. A valuable, up-to-date resource, it offers an essential overview of the subject for scientists and practitioners alike, and will inspire further investigations and research.
Practical MEMS focuses on analyzing the operational principles of microsystems. The salient features of the book include: Tutorial approach. The book emphasizes the design and analysis through over 100 calculated examples covering all aspects of MEMS design. Emphasis on design. This book focuses on the microdevice operation. First, the physical operation principles are covered. Second, the design equations are derived and exemplified. Practical MEMS is a perfect companion to MEMS fabrication textbooks. Quantitative performance analysis. The critical performance parameters for the given application are identified and analyzed. For example, the noise and power performance of piezoresistive and capacitive accelerometers is analyzed in detail. Mechanical, resistive (thermal and 1/f-noise), and circuit noise analysis is covered. Application specifications. Different MEMS applications are compared to commercial design requirements. For example, the optical MEMS is analyzed in the context of bar code scanner, projection displays, and optical cross connect specifications. MEMS economics and market analysis. A full chapter is devoted to yield and cost analysis of microfabricated devices. In addition, the market economics for emerging applications such as RF MEMS is discussed. |
You may like...
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|