![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Provides comprehensive information on the tribological aspects of advanced ceramic materials for all uses that require controlled friction and wear resistance. The text is a guide to altering the microstructure of ceramics to create optimum performance in sliding and rolling contact applications.
This book offers frameworks for the material modeling of gradient materials both for finite and small deformations within elasticity, plasticity, viscosity, and thermomechanics. The first chapter focuses on balance laws and holds for all gradient materials. The next chapters are dedicated to the material modeling of second and third-order materials under finite deformations. Afterwards the scope is limited to the geometrically linear theory, i.e., to small deformations. The next chapter offers an extension of the concept of internal constraints to gradient materials. The final chapter is dedicated to incompressible viscous gradient fluids with the intention to describe, among other applications, turbulent flows, as already suggested by Saint-Venant in the middle of the 19th century.
The book retraces the history of the Italian Association of Theoretical and Applied Mechanics (AIMETA) since its establishment in 1965. AIMETA is the official Italian association of mechanics adhering to IUTAM (International Union of Theoretical and Applied Mechanics), which organizes and coordinates a meaningful number of research activities, the most important of which are the biennial National Congress and the internationally renowned journal "Meccanica", published by Springer. Besides collecting and organizing all related important data and information, as far as possible, by distinguishing among the five scientific areas - general mechanics, solids, structures, fluids, machines - encompassed by AIMETA, the history of the association is assumed as a proper perspective to overview the evolution of theoretical and applied mechanics in Italy over about the last fifty years. This is accomplished in the first part of the book. with also a specific focus on the mechanics of solids and structures, where the biographies of a meaningful number of recognized Italian scholars of mechanics in all areas are also provided, along with testimonials and memories by a few senior people meaningfully involved with AIMETA and Italian mechanics. The second part gives an account, although unavoidably incomplete, of recent developments of mechanical sciences in Italy, as reflected also in the activities of AIMETA and with reference to the international context. Contributions by a number of invited senior scholars, still very active, consist of overviews on some scientific themes in the various areas, summaries of achievements of research groups, expressions of research viewpoints, prospects for future developments.
This updated and enlarged Second Edition provides in-depth, progressive studies of kinematic mechanisms and offers novel, simplified methods of solving typical problems that arise in mechanisms synthesis and analysis - concentrating on the use of algebra and trigonometry and minimizing the need for calculus.;It continues to furnish complete coverage of: key concepts, including kinematic terminology, uniformly accelerated motion, and the properties of vectors; graphical techniques for both velocity and acceleration analysis; analytical techniques; and ready-to-use computer and calculator programmes for analyzing basic classes of mechanisms.;This edition supplies detailed explications of such new topics as: gears, gear trains, and cams; velocity and acceleration analyses of rolling elements; acceleration analysis of sliding contact mechanisms by the effective component method; four-bar analysis by the parallelogram method; and centre of curvature determination methods.
Geothermics in Basin Analysis focuses on the study of sedimentary basins, stressing essential parts of problems in which geothermics is involved. Subject matter includes the measuring of temperature logs and capturing of industrial temperature data and their interpretation to delineate subsurface conditions and processes, the importance of porosity and pore filling for modeling thermal fields, the thermal insulation of shales, geothermal anomalies associated with mud diapirs and basin hydrodynamic regimes, temperatures related to magmatic underplating and plate tectonics.
Alternating current (AC) induction and synchronous machines are frequently used in variable speed drives with applications ranging from computer peripherals, robotics, and machine tools to railway traction, ship propulsion, and rolling mills. The notable impact of vector control of AC drives on most traditional and new technologies, the multitude of practical configurations proposed, and the absence of books treating this subject as a whole with a unified approach were the driving forces behind the creation of this book.
This volume is the third in the series of the book entitled, 'Advances in Solar Energy Technology'. The purpose of writting this multiple volume book is to provide all the relevant latest information in the field of Solar Energy (Applied as well as theoretical) to serve as the best source material at one place. Attempts are made to discuss topics in depth to assist both the students (undergraduate, pos- graduate, Research Scholars) and the professionals (consulting, design, contracting firms). The third volume discusses the heating, agricultural and photovo1taic applications of Solar Energy. Chapter 1 deals with solar cookers, one of the important application area for developing countries. After discussing the history of solar cookers, eight types of direct solar cookers, two types of box solar cookers and two types of advanced solar cookers are discussed in detail. The performance studies carri d out on direct type and on box type solar cookers are also presented. A test procedure for rating a box type solar cooker is also introduced. The limitations and advantages of various cookers are discussed briefly in the chapter. Desalinated water for drinking purposes, for industrial and agricultural applications is required. The topic of Solar Distillation is discussed in detail in chapter two. Solar Distillation has a long history and in this chapter various kind of solar stills like conventional solar still, tilted tray solar still, wick type solar still, mUltiple effect diffusion solar still, multistage flash distillation, etc.
This book gathers the latest advances in the field of history of science and technology, as presented by leading international researchers at the 7th International Symposium on History of Machines and Mechanisms (HMM), held in Granada and Jaen, Spain on April 28-30, 2022. The Symposium, which was promoted by the permanent commission for the History of Machine and Mechanism Science (MMS) of IFToMM, provided an international forum to present and discuss historical developments in the field of MMS. The contents cover all aspects of the development of MMS from antiquity until the present era and its historiography: modern reviews of past works, engineers in history and their works, the development of theories, history of the design of machines and mechanisms, historical developments of mechanical design and automation, historical developments of teaching, the history of schools of engineering, the education of engineers. The contributions, which were selected by means of a rigorous international peer-review process, highlight numerous exciting ideas that will spur novel research directions and foster multidisciplinary collaborations.
The proceedings of the conference is going to benefit the researchers, academicians, students and professionals in getting enlightened on latest technologies on structural mechanics, structure and infrastructure engineering. Further, work on practical applications of developed scientific methodologies to civil structural engineering will make the proceedings more interesting and useful to practicing engineers and structural designers.
The purpose of this text is to benefit users, manufacturers and engineers by drawing together an overall view of the technology. It attempts to give the reader an appreciation of the extent to which slurry transport is presently employed, the theoretical basis for pipeline design and the practicalities of design and new developments.
This volume is concerned with vibration-free and quiet operation of hydraulic machines. It deals with the problems caused by mechanical and hydraulic excitations in hydraulic machinery (except for transients which are treated in a separate volume). The invited authors from five continents are internationally recognized experts in their fields. The book looks at the fundamentals for analysis of fluid structure systems, structural vibration, shaft rotordynamics and system instability; noise and diagnosis are introduced with examples from practical experience.
This volume in the Hydraulic Machinery Book Series covers the most important types of hydraulic machinery: hydraulic turbines for transforming water power to mechanical output; and pumps for producing fluid pressure for many purposes. It describes the features of mechanical design of various types of turbines and pumps. The structure of a hydraulic machine is decided primarily to satisfy the need of fluid flow, so hydraulic characteristics of the machines are also stressed. Manufacturing processes of turbines and pumps and their requirements are referred to in chapters on mechanical construction.
Thermomechanics of Solids and Structures: Physical Mechanisms, Continuum Mechanics, and Applications covers kinematics, balance equations, the strict thermodynamic frameworks of thermoelasticity, thermoplasticity, creep covering constitutive equations, the physical mechanisms of deformation, along with computational aspects. The book concludes with coverage of the thermodynamics of solids and applications of the constitutive three-dimensional model to both one-dimensional homogeneous and composite beam structures. Practical applications of the theories and techniques covered are emphasized throughout the book, with analytical solutions provided for various problems.
This book focuses on the analytical modeling of fractional-slot concentrated-wound (FSCW) interior permanent magnet (IPM) machines and establishes a basis for their magnetic and electrical analysis. Aiming at the precise modeling of FSCW IPM machines' magnetic and electrical characteristics, it presents a comprehensive mathematical treatment of the stator magneto-motive force (MMF), the IPM rotor non-homogeneous magnetic saturation, and its airgap flux density. The FSCW stator spatial MMF harmonics are analytically formulated, providing a basis on which a novel heuristic algorithm is then proposed for the design of optimal winding layouts for multiphase FSCW stators with different slot/pole combinations. In turn, the proposed mathematical models for the FSCW stator and the IPM rotor are combined to derive detailed mathematical expressions of its operational inductances, electromagnetic torque, torque ripple and their respective subcomponents, as a function of the machine geometry and design parameters. Lastly, the proposed theories and analytical models are validated using finite element analysis and experimental tests on a prototype FSCW IPM machine.
This book offers a state-of-the-art overview and includes recent developments of various direct computational analysis methods. It is based on recently developed and widely employed numerical procedures for limit and shakedown analysis of structures and their extensions to a wide range of physical problems relevant to the design of materials and structural components. The book can be used as a complementary text for advanced academic courses on computational mechanics, structural mechanics, soil mechanics and computational plasticity and it can be used a research text.
This book discusses the diverse array of particles that are found in coatings from both a physical and a performance standpoint. It also describes the fundamentals of particle behavior and shows how these affect the performance and properties of their end-use applications. It consists of nineteen chapters, demonstrating the wide range of types of particles found in coatings as well as the diversity of the important attributes they hold. The authors also present a forward looking view of current issues and trends in the coatings industry. In addition, a chapter on the use of particles in paper laminate, a closely aligned field, is included. This book is of interest to formulators of any type of coatings as well as researchers in aligned fields that use high volumes of small particles, such as the plastics and paper industries.
This volume constitutes an advanced introduction to the field of analysis, modeling and numerical simulation of rigid body mechanical systems with unilateral constraints. The topics include Moreau's sweeping process, the numerical analysis of nonsmooth multibody systems with friction, the study of energetical restitution coefficients for elasto-plastic models, the study of stability and bifurcation in systems with impacts, and the development of a multiple impact rule for Newton's cradle and the simple rocking model. Combining pedagogical aspects with innovative approaches, this book will not only be of interest to researchers working actively in the field, but also to graduate students wishing to get acquainted with this field of research through lectures written at a level also accessible to nonspecialists.
Proceedings of the International Conference on Steel and Aluminium Strucutres, ICSAS 91, Singapore 22-24 May 1991. The complete proceedings are available in three volumes: steel structures, aluminium structures and composite steel structures. The conference was organised by the Department of Civil Engineering, National University of Singapore sequel to the one held in Cardiff, UK in July 1987. It was co-sponsored by the International Association for Bridge and Structural Engineering, the Institution of Civil Engineers, the Institution of Engineers, Singapore, the Institution of Structural Engineers, the Steel Construction Institute, UK, the Singapore Structural Steel Society and the University of Wales College of Cardiff. The conference provided a forum to discuss recent advances and trends in the analysis, design and construction of all types of metal structures. This volume contains 18 of the papers presented at the conference. Invited Lectures on the state-of-the-art surveys have been provided by well-known experts in their respective fields. The coverage is extensive and topics include Bridges, Building Floor Systems, Concrete Filled Hollow Sections, Aluminium-concrete Systems, Composite Members to Earthquake Loading, etc.
This book is the result of two decades of research work which started with an accidental observation. One of my students, Dipl. phys. Volkmar Lenz, - ticed that the speckle pattern of laser light scattered by a cuvette containing diluted milk performed a strange motion every time he came near the cuvette with his thumb. After thinkingabout this e?ect we came to the conclusion that this motion can only be caused by scatteringparticles with di?erent velocities, as in the case of the di?raction pattern of an optical grating: A linear motion of the grating does not change the pattern whereas a rotation of the grating does. The observed speckle motion could then be explained qualitatively as produced by the inhomogeneous velocity of the convection within the cuvette which was produced by the heat of the thumb. The theoretical treatment of this e?ect revealed that the velocity gradient of the light scattering medium is responsible for the speckle motion. The idea to use this e?ect for developingmeasurement techniques for velocity gradients arose almost immediately. For that purpose we had to develop not only experimental set-ups to measure the pattern velocity but also the theory which describes the connection between this velocity and the velocity gradient. The result of this work together with the description of a method developed by another group forms the contents of this book. I am indebted to the students who worked in my laboratory and developed the measurement techniques. These were, in temporal order, Dr.
Micro Electro Mechanical Systems (MEMS) is already about a billion dollars a year industry and is growing rapidly. So far major emphasis has been placed on the fabrication processes for various devices. There are serious issues related to tribology, mechanics, surfacechemistry and materials science in the operationand manufacturingof many MEMS devices and these issues are preventing an even faster commercialization. Very little is understood about tribology and mechanical properties on micro- to nanoscales of the materials used in the construction of MEMS devices. The MEMS community needs to be exposed to the state-of-the-artoftribology and vice versa. Fundamental understanding of friction/stiction, wear and the role of surface contamination and environmental debris in micro devices is required. There are significantadhesion, friction and wear issues in manufacturing and actual use, facing the MEMS industry. Very little is understood about the tribology of bulk silicon and polysilicon films used in the construction ofthese microdevices. These issues are based on surface phenomenaand cannotbe scaled down linearly and these become increasingly important with the small size of the devices. Continuum theory breaks down in the analyses, e. g. in fluid flow of micro-scale devices. Mechanical properties ofpolysilicon and other films are not well characterized. Roughness optimization can help in tribological improvements. Monolayers of lubricants and other materials need to be developed for ultra-low friction and near zero wear. Hard coatings and ion implantation techniques hold promise.
Developed from the author's course on advanced mechanics of composite materials, Finite Element Analysis of Composite Materials with Abaqus (R) shows how powerful finite element tools tackle practical problems in the structural analysis of composites. This Second Edition includes two new chapters on "Fatigue" and "Abaqus Programmable Features" as well as a major update of chapter 10 "Delaminations" and significant updates throughout the remaining chapters. Furthermore, it updates all examples, sample code, and problems to Abaqus 2020. Unlike other texts, this one takes theory to a hands-on level by actually solving problems. It explains the concepts involved in the detailed analysis of composites, the mechanics needed to translate those concepts into a mathematical representation of the physical reality, and the solution of the resulting boundary value problems using Abaqus. The reader can follow a process to recreate every example using Abaqus graphical user interface (CAE) by following step-by-step directions in the form of pseudo-code or watching the solutions on YouTube. The first seven chapters provide material ideal for a one-semester course. Along with offering an introduction to finite element analysis for readers without prior knowledge of the finite element method (FEM), these chapters cover the elasticity and strength of laminates, buckling analysis, free edge stresses, computational micromechanics, and viscoelastic models for composites. Emphasizing hereditary phenomena, the book goes on to discuss continuum and discrete damage mechanics as well as delaminations and fatigue. The text also shows readers how to extend the capabilities of Abaqus via "user subroutines" and Python scripting. Aimed at advanced students and professional engineers, this textbook features 62 fully developed examples interspersed with the theory, 82 end-of-chapter exercises, and 50+ separate pieces of Abaqus pseudo-code that illustrate the solution of example problems. The author's website offers the relevant Abaqus and MATLAB model files available for download, enabling readers to easily reproduce the examples and complete the exercises. Video recording of solutions to examples are available on YouTube with multilingual captions.
This book trains engineers and students in the practical application of machining dynamics, with a particular focus on milling. The book walks readers through the steps required to improve machining productivity through chatter avoidance and reduced surface location error, and covers in detail topics such as modal analysis (including experimental methods) to obtain the tool point frequency response function, descriptions of turning and milling, force modeling, time domain simulation, stability lobe diagram algorithms, surface location error calculation for milling, beam theory, and more. This new edition includes updates throughout the entire text, new exercises and examples, and a new chapter on machining tribology. It is a valuable resource for practicing manufacturing engineers and graduate students interested in learning how to improve machining productivity through consideration of the process dynamics.
This work presents the most recent research in the mechanism and machine science field and its applications. The topics covered include: theoretical kinematics, computational kinematics, mechanism design, experimental mechanics, mechanics of robots, dynamics of machinery, dynamics of multi-body systems, control issues of mechanical systems, mechanisms for biomechanics, novel designs, mechanical transmissions, linkages and manipulators, micro-mechanisms, teaching methods, history of mechanism science and industrial and non-industrial applications. This volume consists of the Proceedings of the 5th European Conference on Mechanisms Science (EUCOMES) that was held in Guimaraes, Portugal, from September 16 - 20, 2014. The EUCOMES is the main forum for the European community working in Mechanisms and Machine Science.
This book provides a comprehensive overview of the potential use cases and intelligent technologies, UAV layered architectures, research findings, experimental results, and standardization for intelligent UAV communications for public safety networks. This book will cover the conventional non-intelligent and intelligent solutions specifically targeting UAV communications for public safety networks. Moreover, reconfigurable intelligent surface (RIS) has recently attracted researchers and academician attention because its ability improves the propagation environment and enhances communication quality by intelligently reflecting the received signals. Leveraging intelligence into RIS-assisted UAV communications will meet the requirements of the intelligent, green, and sustainable 5G and beyond cellular networks, which makes it a potential candidate to overcome the inherent drawbacks of legacy wireless systems. The topics covered in this book will be of interest to both the professionals and students. 3D UAV placements schemes, trajectory design, interference management schemes, reinforcement learning solutions for more intelligent and trained solutions, joint UAV trajectory and RIS's passive beamforming design, and various other related topics of readers' interest are presented in detail.
Separation of the elements of classical mechanics into kinematics and dynamics is an uncommon tutorial approach, but the author uses it to advantage in this two-volume set. Students gain a mastery of kinematics first - a solid foundation for the later study of the free-body formulation of the dynamics problem. A key objective of these volumes, which present a vector treatment of the principles of mechanics, is to help the student gain confidence in transforming problems into appropriate mathematical language that may be manipulated to give useful physical conclusions or specific numerical results. In the first volume, the elements of vector calculus and the matrix algebra are reviewed in appendices. Unusual mathematical topics, such as singularity functions and some elements of tensor analysis, are introduced within the text. A logical and systematic building of well-known kinematic concepts, theorems, and formulas, illustrated by examples and problems, is presented offering insights into both fundamentals and applications. Problems amplify the material and pave the way for advanced study of topics in mechanical design analysis, advanced kinematics of mechanisms and analytical dynamics, mechanical vibrations and controls, and continuum mechanics of solids and fluids. Volume I of Principles of Engineering Mechanics provides the basis for a stimulating and rewarding one-term course for advanced undergraduate and first-year graduate students specializing in mechanics, engineering science, engineering physics, applied mathematics, materials science, and mechanical, aerospace, and civil engineering. Professionals working in related fields of applied mathematics will find it a practical review and a quick reference for questions involving basic kinematics. |
You may like...
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Power Recovery from Low Grade Heat by…
Ian Smith, Nikola Stosic, …
Hardcover
R3,515
Discovery Miles 35 150
|