![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Two key words for mechanical engineering in the future are Micro and Intelligence. It is weIl known that the leadership in the intelligence technology is a marter of vital importance for the future status of industrial society, and thus national research projects for intelligent materials, structures and machines have started not only in advanced countries, but also in developing countries. Materials and structures which have self-sensing, diagnosis and actuating systems, are called intelligent or smart, and are of growing research interest in the world. In this situation, the IUT AM symposium on Dynamics 0/ Advanced Materials and Smart Structures was a timely one. Smart materials and structures are those equipped with sensors and actuators to achieve their designed performance in achanging environment. They have complex structural properties and mechanical responses. Many engineering problems, such as interface and edge phenomena, mechanical and electro-magnetic interaction/coupling and sensing, actuating and control techniques, arise in the development ofintelligent structures. Due to the multi-disciplinary nature ofthese problems, all ofthe classical sciences and technologies, such as applied mathematics, material science, solid and fluid mechanics, control techniques and others must be assembled and used to solve them. IUTAM weIl understands the importance ofthis emerging technology. An IUTAM symposium on Smart Structures and Structronic Systems (Chaired by U.
The ninth International Cryogenic Materials Conference (ICMC) was held on the campus of the University of Alabama at Huntsville (UAH) in collaboration with the Cryogenic Engineering Conference (CEC) on June 11-14, 1991. The continuing bond between these two major conferences in the field of cryogenics is indicative of the extreme interdependence of their subject matter. The major purpose of the conference is sharing of the latest advances in low temperature materials science and technology. However, the many side benefits which accrue when this many experts gather, such as identification of new research areas, formation of new collaborations which often cross the boundaries of both scientific discipline and politics, and a chance for those new to the field to meet the old-timers, may override the stated purpose. This 1991 ICMC was chaired by F. R. Fickett of the National Institute of Standards and Technology. K. T. Hartwig, of Texas A&M served as Program Chairman with the assistance of eleven other Program Committee members. We especially appreciate the contributions of the CEC board and its Conference Chairman, J. Hendricks of Alabama Cryogenic Engineering, to the organization. of this joint conference. UAH hosted the conference. The local arrangements and management, under the watchful eye of Ann Yelle and Mary Beth Magathan of the UAH conference staff, were excellent. Participation in the CEC/ICMC continues to exceed expectations with 650 registrants for the combined conference.
The 1995 International Cryogenic Materials Conference (lCMC) was held at the Greater Columbus Convention Center in Columbus, Ohio, in conjunction with the Cryogenic Engineering Conference (CEC) on July 17-21. The interdependent subjects of the two conferences attracted more than eight hundred participants, who came to share the latest advances in low-temperature materials science and technology. They also came for the important by products of the conferences: identification of new research areas, of collaborative research possibilities, and the establishment and renewal of exploration professional relationships. Ted Collings (Ohio State University), as Chairmen of the 1995 ICMC; Ted Hartwig (Texas A&M University), as Program Chairman; and twenty-one other Program Committee members expertly arranged the ICMC technical sessions and related activities. The contributions of the CEC board and its Conference Chairman James B. Peeples of CVI, Inc., were central to the success of the eleventh CEC/ICMC. Jeff Bergen of Lake Shore Cryogenics served as Exhibits Chairman. Local arrangements and conference management were expertly handled under the guidance of Centennial Conferences, Inc. Skillful assistance with editing and preparation ofthese proceedings was provided by Ms. Vicky Bardos ofSynchrony, Inc.
This book provides an introduction to the Human Centred Design of autonomous vehicles for professionals and students. While rapid progress is being made in the field of autonomous road vehicles the majority of actions and the research address the technical challenges, with little attention to the physical, perceptual, cognitive and emotional needs of humans. This book fills a gap in the knowledge by providing an easily understandable introduction to the needs and desires of people in relation to autonomous vehicles. The book is "human centred design" led, adding an important human perspective to the primarily technology-driven debates about autonomous vehicles. It combines knowledge from fields ranging from linguistics to electrical engineering to provide a holistic, multidisciplinary overview of the issues affecting the interactions between autonomous vehicles and people. It emphasises the constraints and requirements that a human centred perspective necessitates, giving balanced information about the potential conflicts between technical and human factors. The book provides a helpful introduction to the field of design ethics, to enhance the reader's awareness and understanding of the multiple ethical issues involved in autonomous vehicle design. Written as an accessible guide for design practitioners and students, this will be a key read for those interested in the psychological, sociological and ethical factors involved in automotive design, human centred design, industrial design and technology.
In today's business environment, reliability and maintenance drastically affect the three key elements of competitiveness - quality, cost, and product lead time. Well-maintained machines hold tolerances better, help reduce scrap and rework, and raise consistency and quality of the part in addition to cutting total production costs. Today, many factories are still performing maintenance on equipment in a reactive manner due to a lack of understanding about machine performance behaviour. To improve production efficiency, computer-aided maintenance and diagnostic methodology must be applied effectively in manufacturing. This book focuses on the fundamental principles of predictive maintenance and diagnostic engineering. In addition to covering the relevant theory, techniques and methodologies in maintenance engineering, the book also provides numerous case studies and examples illustrating the successful application of the principles and techniques outlined.
Focussing on occurrences of unstable vibrations, or Chatter, in machine tools, this book gives important insights into how to eliminate chatter with associated improvements in product quality, surface finish and tool wear. Covering a wide range of machining processes, including turning, drilling, milling and grinding, the author uses his research expertise and practical knowledge of vibration problems to provide solutions supported by experimental evidence of their effectiveness. In addition, this book contains links to supplementary animation programs that help readers to visualise the ideas detailed in the text. Advancing knowledge in chatter avoidance and suggesting areas for new innovations, Chatter and Machine Tools serves as a handbook for those desiring to achieve significant reductions in noise, longer tool and grinding wheel life and improved product finish.
The Boundary Element Method sets out a simple, efficient and cost effective computational technique which provides numerical solutions -- for objects of any shape -- for a wide range of scientific and engineering problems. The Boundary Element Method provides a complete approach to formulating boundary integral equations for scientific and engineering problems and solving them numerically using an element approximation. Only a knowledge of elementary calculus is required, since the text begins by relating familiar differential equations to integral equations and then moves on to the simple solution of integral equations. From this starting point, the mathematics of formulation and numerical approximation are developed progressively with every mathematical step being provided. Particular attention is paid to the problem of accurate evaluation of singular integrands and to the use of increasing levels of accuracy provided by constant, linear and quadratic approximations. This enables a full solution to be given for both two dimensional and three dimensional potential problems and finally, for the two dimensional elastostatics problem. The Boundary Element Method develops the mathematics of the text progressively both within chapters and from chapter to chapter. It is a self-contained, step by step, exposition of the boundary element method, leading to its application to the key problem of elastostatics. The Boundary Element Method may be used as a standard introductory reference text for the mathematics of this method and is ideal for final year undergraduate study as well as for postgraduates, scientists and engineers new to the subject. Worked examples and exercises are providedthroughout the text.
FolJowing the formulation of the laws of mechanics by Newton, Lagrange sought to clarify and emphasize their geometrical character. Poincare and Liapunov successfuIJy developed analytical mechanics further along these lines. In this approach, one represents the evolution of all possible states (positions and momenta) by the flow in phase space, or more efficiently, by mappings on manifolds with a symplectic geometry, and tries to understand qualitative features of this problem, rather than solving it explicitly. One important outcome of this line of inquiry is the discovery that vastly different physical systems can actually be abstracted to a few universal forms, like Mandelbrot's fractal and Smale's horse-shoe map, even though the underlying processes are not completely understood. This, of course, implies that much of the observed diversity is only apparent and arises from different ways of looking at the same system. Thus, modern nonlinear dynamics 1 is very much akin to classical thermodynamics in that the ideas and results appear to be applicable to vastly different physical systems. Chaos theory, which occupies a central place in modem nonlinear dynamics, refers to a deterministic development with chaotic outcome. Computers have contributed considerably to progress in chaos theory via impressive complex graphics. However, this approach lacks organization and therefore does not afford complete insight into the underlying complex dynamical behavior. This dynamical behavior mandates concepts and methods from such areas of mathematics and physics as nonlinear differential equations, bifurcation theory, Hamiltonian dynamics, number theory, topology, fractals, and others.
The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering.
This book defines the current state-of-the-art for predicting the lifetime of plastics exposed to weather and outlines the future research needed to advance this important field of study. Coverage includes progress in developing new science and test methods to determine how materials respond to weather exposure. This book is ideal for researchers and professionals working in the field of service life prediction. This book also: Examines numerous consensus standards that affect commercial products allowing readers to see the future of standards related to service life prediction Provides scientific foundation for latest commercially viable instruments Presents groundbreaking research including the blueprint of a new test method that will significantly shorten the service life prediction process time Covers two of the latest verified predictive models, which demonstrate realized-potential to transform the field
This text provides an introduction, at the level of an advanced student in engineering or physics, to the field of nanomechanics and nanomechanical devices. It provides a unified discussion of solid mechanics, transducer applications, and sources of noise and nonlinearity in such devices. Demonstrated applications of these devices, as well as an introduction to fabrication techniques, are also discussed. The text concludes with an overview of future technologies, including the potential use of carbon nanotubes and other molecular assemblies.
The First International Symposium on the Education in Mechanism
and Machine Science (ISEMMS 2013) aimed to create a stable platform
for the interchange of experience among researches of mechanism and
machine science.
Proceedings of an International Symposium on Absorbed Specific Energy and Strain Energy Density Criterion, Budapest, September 1980. In memory of the late Professor Laszlo Gillemot"
This book presents the latest results related to shells characterize and design shells, plates, membranes and other thin-walled structures, a multidisciplinary approach from macro- to nanoscale is required which involves the classical disciplines of mechanical/civil/materials engineering (design, analysis, and properties) and physics/biology/medicine among others. The book contains contributions of a meeting of specialists (mechanical engineers, mathematicians, physicists and others) in such areas as classical and non-classical shell theories. New trends with respect to applications in mechanical, civil and aero-space engineering, as well as in new branches like medicine and biology are presented which demand improvements of the theoretical foundations of these theories and a deeper understanding of the material behavior used in such structures.
This is the second volume of a series of edited books whose aim is to collect c- tributed papers within a framework that can serve as a collection of persons in MMS (Mechanism and Machine Science). This is a continuation of the first volume that was published in 2008, again combining very ancient and very recent scholars in order to give not only an encyclopaedic character to this project but also to emphasize the significance of MMS over time. This project has the characteristic that the papers illustrate, by recognizing p- sons and their scientific work, mainly technical developments in the historical evolution of the fields that today are grouped in MMS. Thus, emphasis is also given to biographical notes describing efforts and experiences of people who have c- tributed to the technical achievements whose technical survey is the core of each contributed paper. This second volume of the project has been possible thanks to the invited authors who have enthusiastically shared in this initiative and who have spent time and effort in preparing the papers. The stand-alone papers cover the wide field of the History of Mechanical Engineering with specific focus on MMS. I believe that readers will take advantage of the papers in this book and future ones by supplying further satisfaction and motivation for her or his work (historical or not).
Hailed instantly as the definitive field reference, the first edition of Metallurgical Failures in Fossil Fired Boilers provided a comprehensive catalog of the types of metallurgical failures common to boilers. Using actual case histories of boiler shutdowns, the book documented, as no existing text did, the full range of causes of boiler tube failure - providing a blueprint for cutting maintenance costs and upgrading the efficiency and reliability of any power plant operation. Reflecting the heightened focus throughout the industry on boiler-tube failure analysis, this expanded Second Edition sheds light on the latest innovative insights and solutions highlighting the field. The new edition now features material on fluid dynamics, heat transfer, and stress calculations, essential requirements of boiler design. For added relevance, this edition includes important information on making material-condition and end-of-life assessments for plant equipment being used beyond its original design expectations. Also included is up-to-date information on the higher temperature ranges now experienced by boilers. An expanded listing of boiler equipment as well as new case studies examining an even wider, more current range of problems makes the book more useful than ever. Yet, the Second Edition retains the structure and practical tone of its successful forerunner. Readers will again find detailed and expert analysis of the full range of metallurgical failures common to boilers - from corrosion, high-temperature related phenomena, welding problems, fabrication defects, to changes in microstructure, oxidation, exfoliation, decarburization, and more. Specific real-world examples of each of the causesof failure are provided, along with full operating details of the particular unit at the time of rupture. In addition, the fundamentals of elementary metallurgy are clearly presented, enabling even non metallurgists to fully grasp the analyses of the examples given. Not only is the significance of metallurgy in boiler design made clear, the new updated edition also illustrates the key mechanical engineering aspects of the design process as well. Underscoring, with practical specifics, the importance of preventative design techniques, the Second Edition is an incomparable handbook to building more failure-resistant boiler and heat-transfer equipment. Basic to the maintenance and success of any power plant operation in the 1990s, Metallurgical Failures in Fossil Fired Boilers, Second Edition is destined to become the undisputed staple of the professional's library or drafting board.
This book deals with magnetorheological fluid theory, modeling and applications of automotive magnetorheological dampers. On the theoretical side a review of MR fluid compositions and key factors affecting the characteristics of these fluids is followed by a description of existing applications in the area of vibration isolation and flow-mode shock absorbers in particular. As a majority of existing magnetorheological devices operates in a so-called flow mode a critical review is carried out in that regard. Specifically, the authors highlight common configurations of flow-mode magnetorheological shock absorbers, or so-called MR dampers that have been considered by the automotive industry for controlled chassis applications. The authors focus on single-tube dampers utilizing a piston assembly with one coil or multiple coils and at least one annular flow channel in the piston.
Computational Methods for Microstructure-Property Relationships introduces state-of-the-art advances in computational modeling approaches for materials structure-property relations. Written with an approach that recognizes the necessity of the engineering computational mechanics framework, this volume provides balanced treatment of heterogeneous materials structures within the microstructural and component scales. Encompassing both computational mechanics and computational materials science disciplines, this volume offers an analysis of the current techniques and selected topics important to industry researchers, such as deformation, creep and fatigue of primarily metallic materials. Researchers, engineers and professionals involved with predicting performance and failure of materials will find Computational Methods for Microstructure-Property Relationships a valuable reference.
The Microsystems Series has as its goal the creation of an outstanding set of textbooks, references, and monographs on subjects that span the broad field of microsystems. Exceptional PhD dissertations provide a good starting point for such a series, because, unlike monographs by more senior authors, which must compete with other professional duties for attention, the dissertation becomes the sole focus of the author until it is completed. Conversion to book form is then a streamlined process, with final editing and book production completed within a few months. Thus we are able to bring important and timely material into book form at a pace which tracks this rapidly developing field. Our first four books in the series were drawn from the more physics-oriented side of the microsystems field, including such diverse subjects as computer-aided design, atomic-force microscopy, and ultrasonic motion detection. Now, with Sangeeta Bhatia's work, we enter the realm of biology. Her use of artifically structured substrates to encourage the liver cells to form orderly assemblies is a fine example of how microfabrication technology can contribute to cell biology and medicine. I am pleased to be able to add this very new and very interesting work to the Microsystems Series. Stephen D. Senturia Cambridge MA Microfabrication in Tissue Engineering and Bioartificial Organs Foreword One of the emerging applications of microsystems technology in biology and medicine is in the field of tissue engineering and artificial organs. In order to function, cells need to receive proper signals from their environment.
The book analyzes the basic problems of oscillation processes and theoretical aspects of noise and vibration in friction systems. It presents generalized information available in literature data and results of the authors in vibroacoustics of friction joints, including car brakes and transmissions. The authors consider the main approaches to abatement of noise and vibration in non-stationary friction processes. Special attention is paid to materials science aspects, in particular to advanced composite materials used to improve the vibroacoustic characteristics of tribopairs The book is intended for researchers and technicians, students and post-graduates specializing in mechanical engineering, maintenance of machines and transport means, production certification, problems of friction and vibroacoustics.
Metamaterial Design and Additive Manufacturing covers optimization design, manufacturing, microstructure, mechanical properties, acoustic properties, mass-transport properties and application examples of PMs fabricated by selective laser melting additive manufacturing technology. The book introduces the definition and concept of pentamode metamaterials and then describes their characterization, including manufacturing fidelity, mechanical response, acoustic properties and so on. Final sections analyze research situations, problems and applications of additive manufacturing pentamode metamaterials.
Computational kinematics is an enthralling area of science with a rich spectrum of problems at the junction of mechanics, robotics, computer science, mathematics, and computer graphics. The present book collects up-to-date methods as presented during the Fifth International Workshop on Computational Kinematics (CK2009) held at the University of Duisburg-Essen, Germany. The covered topics include design and optimization of cable-driven robots, analysis of parallel manipulators, motion planning, numerical methods for mechanism calibration and optimization, geometric approaches to mechanism analysis and design, synthesis of mechanisms, kinematical issues in biomechanics, balancing and construction of novel mechanical devices, detection and treatment of singularities, as well as computational methods for gear design. The results should be of interest for practicing and research engineers as well as Ph.D. students from the fields of mechanical and electrical engineering, computer science, and computer graphics. |
You may like...
|