![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Metal Matrix Composites (MMC's) have found an increased use in various industries due to their special mechanical and physical properties. They are a composite material with at least two constituent parts, one being a metal and are made by dispersing a reinforcing material into a metal matrix. The markets are: telecommunications, automotive, power semiconductor, opto-electronics, military and aerospace, heavy transportation, space systems and satellites, medical, and industrial lighting. Applications within these markets include microwave, micro-electronic packaging, laser diode, HB-LED's, and advanced radar.
This book includes contributions from the Materials Processing Fundamentals Symposium held at the TMS 2018 Annual Meeting & Exhibition in Phoenix, Arizona. Covering the physical and numerical modeling of materials processing, the volume covers a range of metals and minerals. Authors present models and results related the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
Combustion Engines Development nowadays is based on simulation, not only of the transient reaction of vehicles or of the complete driveshaft, but also of the highly unsteady processes in the carburation process and the combustion chamber of an engine. Different physical and chemical approaches are described to show the potentials and limits of the models used for simulation.
Vast tonnages of solid-liquid mixtures are pumped every year in dredging operations, mining and waste-disposal applications. Most of these systems are centrifugal pumps, and the resolution of problems encountered in slurry pumping requires both detailed scientific knowledge and judgment derived from practical experience. For many years the combination of up-to-date analysis and hands-on experimentation has been provided to interested engineers in a short course based at the GIW Hydraulic Laboratory. The lecturers in this course, who represent a broad background of international expertise, have prepared this widely-recognized text, Slurry Transport Using Centrifugal Pumps, Third Edition. This unique text is logically divided into two sections: the first part of the book concentrates on the behaviors of various sorts of slurry flow, and the second part deals with the behavior of centrifugal pumps handling slurries, and with how pumps and pipelines interact as a system. Slurry Transport Using Centrifugal Pumps, Third Edition also includes:
Slurry Transport Using Centrifugal Pumps, Third Edition, will be of interest to all engineers and technologists involved in the large-scale transportation of slurries. .
This book presents in detail the most important driving and engine cycles used for the certification and testing of new vehicles and engines around the world. It covers chassis and engine-dynamometer cycles for passenger cars, light-duty vans, heavy-duty engines, non-road engines and motorcycles, offering detailed historical information and critical review. The book also provides detailed examples from SI and diesel engines and vehicles operating during various cycles, with a focus on how the engine behaves during transients and how this is reflected in emitted pollutants, CO2 and after-treatment systems operation. It describes the measurement methods for the testing of new vehicles and essential information on the procedure for creating a driving cycle. Lastly, it presents detailed technical specifications on the most important chassis-dynamometer cycles around the world, together with a direct comparison of those cycles.
This volume records the Symposium on 'Anisotropy, Inhomogeneity and Nonlinearity in Solid Mechanics', held at the University of Nottingham from 30th August to 3rd September 1994, sponsored by the International Union of Theoretical and Applied Mechanics and held in conjunction with the In- ternational Society for the Interaction of Mechanics and Mathematics. The advent of composite materials, together with their widespread use in recent years, has provided a powerful stimulus for advances in several somewhat ne- glected areas of solid mechanics. Exploitation of fibre-reinforced solids and laminates has rekindled interest in the theory and application of anisotropic elasticity and motivated study of many aspects of material inhomogeneity. The need to understand fibre-matrix interactions, especially in modelling metal- matrix composites and the forming of thermoplastic components has fostered advances in plasticity and viscoelasticity theory, to describe phenomena such as deformation-induced inhomogeneity and anisotropy. Plasticity and flow of granular media are also intrinsically nonlinear, giving rise, for example, to highly anisotropic and strongly localized effects, such as shear bands. Most materials contain impurities. These inclusions, even if microscopically isotropic, cause macroscopic anisotropy in an 'effective-medium' theory. Dy- namic behaviour is even more complex, since wave propagation reveals both attenuation and dispersion effects. Increased interest in finer-scaled compos- ites (nanotechnology and superlattices) and ultra-high frequency techniques continue to reveal new effects, due to inhomogeneity and microstructure. An example included here is lattice-induced dispersion for certain surface waves of relatively long wavelength.
This book addresses the characterization of flow and transport in porous fractured media from experimental and modeling perspectives. It provides a comprehensive presentation of investigations performed and analyzed on different scales.
Modern industry imposes ever increasing requirements upon tools and tool materials as to the provision for performance under the conditions of high cutting speeds and dynamic loads as well as under intensive thermal and chemical interactions with workpiece materials. The industry demands a higher productivity in combination with the accuracy of geometry and dimensions of workpieces and quality of working surfaces of the machined pieces. These requirements are best met by the tool superhard materials (diamond and diamond-like cubic boron nitride). Ceramics based on silicon carbide, aluminum and boron oxides as well as on titanium, silicon and aluminum nitrides offer promise as tool materials. Tungsten-containing cemented carbides are still considered as suitable tool materials. Hi- hardness and high strength composites based on the above materials fit all the requirements imposed by machining jobs when manufacturing elements of machinery, in particular those operating under the extreme conditions of high temperatures and loads. These elements are produced of difficult-- machine high-alloy steels, nickel refractory alloys, high-tech ceramics, materials with metallic and non-metallic coatings having improved wear resistance, as well as of special polymeric and glass-ceramic materials. Materials science at high pressure deals with the use of high-pressure techniques for the development and production of unique materials whose preparation at ambient pressure is impossible (e. g. , diamond, cubic boron nitride, etc. ) or of materials with properties exceeding those of materials produced at ambient pressure (e. g. , high-temperature superconductors).
This book presents recent research on damage mechanics with finite elements. Particular emphasis is laid on programming the finite element method to incorporate applications of damage mechanics. This textbook for graduates and researchers in civil, mechanical, aerospace engineering and materials science deals with the practical applications of damage mechanics, which have not appeared before in the literature. The book contains research on the separation of voids and cracks in continuum damage mechanics. An educational version of a finite element program for damage mechanics is included on a CD-ROM.
< div="">This textbook on Fundamentals of Gas Dynamics will help students with a background in mechanical and/or aerospace engineering and practicing engineers working in the areas of aerospace propulsion and gas dynamics by providing a rigorous examination of most practical engineering problems. The book focuses both on the basics and more complex topics such as quasi one dimensional flows, oblique shock waves, Prandtl Meyer flow, flow of steam through nozzles, etc. End of chapter problems, solved illustrations and exercise problems are presented throughout the book to augment learning. ^
Over the past 30 years, leading experts in turbomachinery unsteady aerodynamics, aer- coustics, and aeroelasticity from around the world have gathered to present and discuss recent advancements in the ?eld. The ?rst International Symposium on Unsteady Aero- namics, Aeroacoustics, and Aeroelasticity of Turbomachines (ISUAAAT) was held in Paris, France in 1976. Since then, the symposium has been held in Lausanne, Switzerland (1980), Cambridge, England (1984), Aachen, Germany (1987), Beijing, China (1989), Notre Dame, Indiana(1991), Fukuoka, Japan(1994), Stockholm, Sweden(1997), andLyon, France(2000). The Tenth ISUAAAT was held September 7-11, 2003 at Duke University in Durham, North Carolina. This volume contains an archival record of the papers presented at that meeting. The ISUAAAT, held roughly every three years, is the premier meeting of specialists in turbomachinery aeroelasticity and unsteady aerodynamics. The Tenth ISUAAAT, like its predecessors, provided a forum for the presentation of leading-edge work in turbomachinery aeromechanics and aeroacoustics of turbomachinery. Not surprisingly, with the continued development of both computer algorithms and computer hardware, the meeting featured a number of papers detailing computational methods for predicting unsteady ?ows and the resulting aerodynamics loads. In addition, a number of papers describing interesting and very useful experimental studies were presented. In all, 44 papers from the meeting are published in this v
This handbook places emphasis on the importance of correct interpretation of pumping requirements, both by the user and the supplier. Completely reworked to incorporate the very latest in pumping technology, this practical handbook will enable you to understand the principles of pumping, hydraulics and fluids and define the various criteria necessary for pump and ancillary selection. The "Pump Users Handbook" will prove an invaluable aid in ordering pump equipment and in the recognition of fundamental oprational problems.
This series of volumes aims to cover all the major aspects of numerical analysis, serving as the basic reference work on the subject. Each volume will concentrate on one, two or three particular topics. Each article, written by an expert, is an in-depth survey, reflecting the most recent trends in the field, and is essentially self-contained. The Handbook will cover the basic methods of numerical analysis, under the following general headings: solution of equations in Rn; finite difference methods; finite element methods; techniques of scientific computing; and optimization theory and systems science. It will also cover the numerical solution of actual problems of contemporary interest in applied mathematics, under the following headings: numerical methods of fluids; numerical methods for solids; and specific applications - including meteorology, seismology, petroleum mechanics and celestial mechanics.
This book introduces the concepts and methodologies related to the modelling of the complex phenomena occurring in materials processing. After a short reminder of conservation laws and constitutive relationships, the authors introduce the main numerical methods: finite differences, finite volumes and finite elements. These techniques are developed in three main chapters of the book that tackle more specific problems: phase transformation, solid mechanics and fluid flow. The two last chapters treat inverse methods to obtain the boundary conditions or the material properties and stochastic methods for microstructural simulation. This book is intended for undergraduate and graduate students in materials science and engineering, mechanical engineering and physics and for engineering professionals or researchers who want to get acquainted with numerical simulation to model and compute materials processing.
The general topic of the symposium follows mechanisms development through all stages of conception, modeling, analysis, synthesis and control to advanced product design. This volume brings together the latest results in the field and celebrates a series of conferences that has been running for 40 years. The contributors and the editor are world leaders in their field.
In the paper the author attempts to assess the fatigue life of chosen welded joints. It focuses especially on chosen problems that accompany deter- nation of the fatigue life of welded joints, taking into consideration the strain energy density parameter. Chapter 2 describes the welded joint as a stress concentrator. The state of stress and strain in the notch are described and theoretical and fatigue coefficients are indicated. The fatigue coef- cient of the notch effect is estimated on the basis of fictitious radius in the notch root. Chapter 3 presents a model of fatigue life assessment under uniaxial stress state with statistical handling of data presented. The new energy model of fatigue life assessment, which rests upon the analysis of stress and strain in the critical plane, is described in detail in chapter 4. The principle of such a description is presented in the uniaxial as well as in - axial state of loading. Chapter 5 contains the analysis of tests of four ma- rials subjected to different loadings: cyclic, variable-amplitude with Ga- sian distribution, and variable amplitude with Gaussian distribution and overloading for symmetric and pulsating loading. The analysis is based on the determined fatigue characteristics for all the considered materials. Chapter 6 shows the application of the model in the fatigue life assessment in the complex state of loading (bending with torsion of flange-tube and tube-tube joints) based on fatigue research of steel and aluminum welded joints carried out in well-known German centres.
This book considers methods of approximate analysis of mechanical, elec tromechanical, and other systems described by ordinary differential equa tions. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical ex amination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it de scribes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intu ition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admis sibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approxi mate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the fol lowing. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2."
Part I introduces the basic "Principles and Methods of Force Measurement" according to a classification into a dozen of force transducerstypes: resistive, inductive, capacitive, piezoelectric, electromagnetic, electrodynamic, magnetoelastic, galvanomagnetic (Hall-effect), vibrating wires, (micro)resonators, acoustic and gyroscopic. Two special chapters refer to force balance techniques and to combined methods in force measurement. Part II discusses the "(Strain Gauge) Force Transducers Components", evolving from the classical force transducer to the digital / intelligent one, with the incorporation of three subsystems (sensors, electromechanics and informatics). The elastic element (EE) is the "heart" of the force transducer and basically determines its performance. A 12-type elastic element classification is proposed (stretched / compressed column or tube, bending beam, bending and/or torsion shaft, middle bent bar with fixed ends, shear beam, bending ring, yoke or frame, diaphragm, axial-stressed torus, axisymmetrical and voluminous EE), with emphasis on the optimum place of the strain gauges. The main properties of the associated Wheatstone bridge, best suited for the parametrical transducers, are examined, together with the appropriate electronic circuits for SGFTs. The handbook fills a gap in the field of Force Measurement, both experts and newcomers, no matter of their particular interest, finding a lot of useful and valuable subjects in the area of Force Transducers; in fact, it is the first specialized monograph in this inter- and multidisciplinary field.
This book gathers the best articles presented by researchers and industrial experts at the International Conference on "Innovative Design, Analysis and Development Practices in Aerospace and Automotive Engineering (I-DAD 2020)". The papers discuss new design concepts, and analysis and manufacturing technologies, with a focus on achieving improved performance by downsizing; improving the strength-to-weight ratio, fuel efficiency and operational capability at room and elevated temperatures; reducing wear and tear; addressing NVH aspects, while balancing the challenges of Euro VI/Bharat Stage VI emission norms, greenhouse effects and recyclable materials. Presenting innovative methods, this book is a valuable reference resource for professionals at educational and research organizations, as well as in industry, encouraging them to pursue challenging projects of mutual interest.
Real-time simulations of the behaviour of a rail vehicle require realistic solutions of the wheel-rail contact problem which can work in a real-time mode. Examples of such solutions for the online mode have been well known and are implemented within standard and commercial tools for the simulation codes for rail vehicle dynamics. This book is the result of the research activities carried out by the Railway Technology Lab of the Department of Mechanical and Aerospace Engineering at Politecnico di Torino. This book presents work on the project for the development of a real-time wheel-rail contact model and provides the simulation results obtained with dSpace real-time hardware. Besides this, the implementation of the contact model for the development of a real-time model for the complex mechatronic system of a scaled test rig is presented in this book and may be useful for the further validation of the real-time contact model with experiments on a full scale test rig.
Moving inertial loads are applied to structures in civil engineering, robotics, and mechanical engineering. Some fundamental books exist, as well as thousands of research papers. Well known is the book by L. Fryba, Vibrations of Solids and Structures Under Moving Loads, which describes almost all problems concerning non-inertial loads. This book presents broad description of numerical tools successfully applied to structural dynamic analysis. Physically we deal with non-conservative systems. The discrete approach formulated with the use of the classical finite element method results in elemental matrices, which can be directly added to global structure matrices. A more general approach is carried out with the space-time finite element method. In such a case, a trajectory of the moving concentrated parameter in space and time can be simply defined. We consider structures described by pure hyperbolic differential equations such as strings and structures described by hyperbolic-parabolic differential equations such as beams and plates. More complex structures such as frames, grids, shells, and three-dimensional objects, can be treated with the use of the solutions given in this book.
This book is a compilation of selected papers from the 2014 New Trends in Fatigue and Fracture (NT2F14) Conference, which was held in Belgrade, Serbia. This prestigious conference brought together delegates from around the globe to discuss how to characterize, predict and analyze the fatigue and fracture of engineering materials, components, and structures using theoretical, experimental, numerical and practical approaches. It highlights some important new trends in fracture mechanics presented at the conference, such as: * two-parameter fracture mechanics, arising from the coupling of fracture toughness and stress constraints * high-performance steel for gas and oil transportation and production (pressure vessels and boilers) * safety and reliability of welded joints This book includes 12 contributions from well-known international scientists and a special tribute dedicated to the scientific contributions of Stojan Sedmark, who passed away in 2014. |
![]() ![]() You may like...
Numerical Algebra, Matrix Theory…
Peter Benner, Matthias Bollhoefer, …
Hardcover
R3,066
Discovery Miles 30 660
Toxic Waste Minimization in the Printed…
T. Nunno, M. Arienti, …
Hardcover
Intelligent Systems and Networks…
Duc-Tan Tran, Gwanggil Jeon, …
Hardcover
R5,730
Discovery Miles 57 300
Differential Equations and Numerical…
Valarmathi Sigamani, John J.H. Miller, …
Hardcover
|