Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
It is our pleasure to present these proceedings for "The Aerodynamics of Heavy Vehicles II: Trucks, Buses and Trains" International Conference held in Lake - hoe, California, August 26-31, 2007 by Engineering Conferences International (ECI). Brought together were the world's leading scientists and engineers from industry, universities, and research laboratories, including truck and high-speed train manufacturers and operators. All were gathered to discuss computer simu- tion and experimental techniques to be applied for the design of the more efficient trucks, buses and high-speed trains required in future years. This was the second conference in the series. The focus of the first conference in 2002 was the interplay between computations and experiment in minimizing ae- dynamic drag. The present proceedings, from the 2007 conference, address the development and application of advanced aerodynamic simulation and experim- tal methods for state-of-the-art analysis and design, as well as the development of new ideas and trends holding promise for the coming 10-year time span. Also - cluded, are studies of heavy vehicle aerodynamic tractor and trailer add-on - vices, studies of schemes to delay undesirable flow separation, and studies of - derhood thermal management.
The Fifth International Symposium on Distributed Autonomous Robotic Systems (DARS 2000) dealt with new strategies to realize complex, modular, robust, and fault-tolerant robotic systems. Technologies, algorithms, and system architectures for distributed autonomous robotic systems were presented and discussed during the meeting. DARS 2000 was truly an international event, with participants represent ing eleven countries from Europe, Asia, and the Americas. All of the papers in this volume were presented at DARS 2000, and were selected on the basis of peer re views to ensure quality and relevance. These papers have the common goal of con tributing solutions to realize robust and intelligent multirobot systems. The topics of the symposium address a wide range of issues that are important in the development of decentralized robotic systems. These topics include architec tures, communication, biological inspirations, reconfigurable robots, localization, exploration and mapping, distributed sensing, multi robot motion coordination, tar get assignment and tracking, multirobot learning, and cooperative object transport. DARS clearly requires a broad area of interdisciplinary technologies related not only to robotics and computer engineering, but also to biology and psychology. The DARS symposium is the leading established conference on distributed au tonomous systems. The First, Second, and Third International Symposia on Distrib uted Autonomous Robotic Systems (DARS '92, DARS '94, and DARS '96) were held at the Institute of Physical and Chemical Research (RIKEN), Saitama, Japan."
This book describes how surface tension effects can be used by engineers to provide mechanical functions in miniaturized products (<1 mm). Even if precursors of this field such as Jurin or Laplace already date back to the 18th century, describing surface tension effects from a mechanical perspective is very recent. The originality of this book is to consider the effects of capillary bridges on solids, including forces and torques exerted both statically and dynamically by the liquid along the 6 degrees-of-freedom. It provides a comprehensive approach to various applications, such as capillary adhesion (axial force), centering force in packaging and micro-assembly (lateral force) and recent developments such as a capillary motor (torque). It devises how surface tension can be used to provide mechanical functions such as actuation (bubble-actuated compliant table), sealing and tightness, energy harvesting, nanodispending.
Heat exchangers are important, and used frequently in the processing, heat and power, air-conditioning and refrigeration, heat recovery, transportation and manufacturing industries. Such equipment is also important in electronics cooling and for environmental issues like thermal pollution, waste disposal and sustainable development. The present book concerns plate heat exchangers (PHEs), which are one of the most common types in practice. The overall objectives are to present comprehensive descriptions of such heat exchangers and their advantages and limitations, to provide in-depth thermal and hydraulic design theory for PHEs, and to present state-of-the-art knowledge.The book starts with a general introduction and historical background to PHEs, then discusses construction and operation (PHE types, plate pattern, etc.) and gives examples of PHEs in different application areas. Material issues (plates, gaskets, brazing materials) and manufacturing methods are also treated.The major part of the book concerns the basic design methods for both single-phase and two-phase flow cases, various flow arrangements, thermal-hydraulic performance in single-phase flow and for PHEs operating as condensers and evaporators. Fouling problems are also discussed and in a section on extended design and operation issues, modern Research and Development (R & D) tools like computational fluid dynamics (CFD) methods are discussed. Unique features for PHEs are discussed throughout.
The history of gears with asymmetric teeth is not sufficiently recorded in modern gear literature, with some gear researchers concluding that asymmetric tooth gears were discovered just several decades ago. This book sheds light upon the origins and state of asymmetric gearing, referencing technical articles from the 19th, 20th, and 21st centuries. As a practicing gear engineer with over 40 years' experience, author Alexander L. Kapelevich has successfully implemented asymmetric gears in a variety of custom gear transmissions. This book addresses all aspects of asymmetric gear development, including theoretical fundamentals; tooth geometry optimization; stress analysis and rating; design and production specifics; analytical and experimental comparison to the best symmetric gears; and application examples. Readers are encouraged to look beyond the status quo established by traditional gear design, and to apply principles of asymmetric gearing to actual gear design. Optimal solutions are presented for gear drives that will maximize technical performance and marketability. Features Presents a state-of the-art, comprehensive historical overview of asymmetric gearing Explains the Direct Gear Design (R) approach to asymmetric gear design Describes asymmetric tooth gear geometry optimization, areas of existence, and parameter selection limits Considers practical aspects of asymmetric gear fabrication and measurement Presents analytical and experimental comparison of asymmetric gears to advanced symmetric gears, showing the advantages of asymmetric designs Provides numerous real-world examples of asymmetric gear application
This book highlights cyber-security overview, perspectives, and challenges that affect advanced Vehicular technology. It considers vehicular security issues and possible solutions, with the aim of providing secure vehicle-to-vehicle, vehicle-to-infrastructure and inside-of-vehicle communication. This book introduces vehicle cryptography mechanism including encryption and decryption approaches and cryptography algorithms such as symmetric and asymmetric cryptography, Hash functions and Digital Signature certificates for modern vehicles. It discusses cybersecurity structure and provides specific security challenges and possible solutions in Vehicular Communication such as vehicle to vehicle communication, vehicle to Infrastructure and in-vehicle communciation. It also presents key insights from security with regards to vehicles collaborative information technology. The more our vehicles become intelligent, the more we need to work on safety and security for vehicle technology. This book is of interest to automotive engineers and technical managers who want to learn about security technologies, and for those with a security background who want to learn about basic security issues in modern automotive applications.
This book includes contributions from the Materials Processing Fundamentals Symposium held at the TMS 2019 Annual Meeting & Exhibition in San Antonio, Texas. This volume includes contributions on the physical and numerical modeling of materials processing, and covers a range of metals and minerals. Authors present models and results related the basics of processing such as extraction, joining, separation, and casting. The corresponding fundamentals of mass and heat transport as well as physical and thermodynamics properties are addressed, allowing for a cross-disciplinary vision of the field.
As a new interdisciplinary research area, image-based geometric modeling and mesh generation integrates image processing, geometric modeling and mesh generation with finite element method (FEM) to solve problems in computational biomedicine, materials sciences and engineering. It is well known that FEM is currently well-developed and efficient, but mesh generation for complex geometries (e.g., the human body) still takes about 80% of the total analysis time and is the major obstacle to reduce the total computation time. It is mainly because none of the traditional approaches is sufficient to effectively construct finite element meshes for arbitrarily complicated domains, and generally a great deal of manual interaction is involved in mesh generation. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications. This contributed volume, the first for such an interdisciplinary topic, collects the latest research by experts in this area. These papers cover a broad range of topics, including medical imaging, image alignment and segmentation, image-to-mesh conversion, quality improvement, mesh warping, heterogeneous materials, biomodelcular modeling and simulation, as well as medical and engineering applications.
"Recent Trends in the Condition Monitoring of Transformers" reflects the current interest in replacing traditional techniques used in power transformer condition monitoring with non-invasive measures such as polarization/depolarization current measurement, recovery voltage measurement, frequency domain spectroscopy and frequency response analysis. The book stresses the importance of scrutinizing the condition of transformer insulation which may fail under present day conditions of intensive use with the resulting degradation of dielectric properties causing functional failure of the transformer. The text shows the reader how to overcome the key challenges facing today s maintenance policies, namely: The selection of appropriate techniques for dealing with each type of failure process accounting for the needs of plant owners, plant users and wider society; and Cost-efficiency and durability of effect. Many of the failure-management methods presented rely on the fact that most failures give warning when they are imminent. These potential failures give rise to identifiable physical conditions and the novel approaches described detect them so that action can be taken to avoid degeneration into full-blown functional failure. This on-condition maintenance means that equipment can be left in service as long as a specified set of performance standards continue to be met, avoiding the costly downtime imposed by routine and perhaps unnecessary maintenance but without risking equally expensive failure. "Recent Trends in the Condition Monitoring of Transformers" will be of considerable interest to both academic researchers in power systems and to engineers working in the power generation and distribution industry showing how new and more efficient methods of fault diagnosis and condition management can increase transformer efficiency and cut costs."
This book introduces an innovative and high-efficiency technology for mechanical energy harvesting. The book covers the history and development of triboelectric nanogenerators, basic structures, working principles, performance characterization, and potential applications. It is divided into three parts: Part A illustrates the fundamental working modes of triboelectric nanogenerators with their prototype structures and theoretical analysis; Part B and Part C introduce two categories of applications, namely self-powered systems and self-powered active sensors. The book will be an ideal guide to scientists and engineers beginning to study triboelectric nanogenerators or wishing to deepen their knowledge of the field. Readers will be able to place the technical details about this technology in context, and acquire the necessary skills to reproduce the experimental setups for fabrication and measurement.
This thesis investigates the use of blade-pitch control and real-time wind measurements to reduce the structural loads on the rotors and blades of wind turbines. The first part of the thesis studies the main similarities between the various classes of current blade-pitch control strategies, which have to date remained overlooked by mainstream literature. It also investigates the feasibility of an estimator design that extracts the turbine tower motion signal from the blade load measurements. In turn, the second part of the thesis proposes a novel model predictive control layer in the control architecture that enables an existing controller to incorporate the upcoming wind information and constraint-handling features. This thesis provides essential clarifications of and systematic design guidelines for these topics, which can benefit the design of wind turbines and, it is hoped, inspire the development of more innovative mechanical load-reduction solutions in the field of wind energy.
The Practice of Engineering Dynamics is a textbook that takes a systematic approach to understanding dynamic analysis of mechanical systems. It comprehensively covers dynamic analysis of systems from equilibrium states to non-linear simulations and presents frequency analysis of experimental data. It divides the practice of engineering dynamics into three parts: Part 1 - Modelling: Deriving Equations of Motion; Part 2 - Simulation: Using the Equations of Motion; and Part 3- Experimental Frequency Domain Analysis. This approach fulfils the need to be able to derive the equations governing the motion of a system, to then use the equations to provide useful design information, and finally to be able to analyze experimental data measured on dynamic systems. The Practice of Engineering Dynamics includes end of chapter exercises and is accompanied by a website hosting a solutions manual.
This thesis provides essential information on the systematic design of assembled lanthanide complexes for functional luminescent materials. It discusses the relationships between assembled structures and photo, thermal, and mechanical properties on the basis of crystallography, spectroscopy, and thermodynamics. The described guidelines for assembled structures will be extremely valuable, both for industrial applications and for readers' fundamental understanding of solid-state photophysics and materials chemistry. Luminescent lanthanide complexes are promising candidates for lighting devices, lasers, and bio-probes owing to their line-like and long-lived emission arising from characteristic 4f-4f transitions. Low-vibrational and asymmetrical coordination structures around lanthanide ions have been introduced to achieve strong luminescence, using specific organic ligands. Recently, assembled lanthanide complexes including coordination polymers and metal organic frameworks have increasingly attracted attention as a new class of luminescent materials offering thermal stability and color tunability. However, improving the luminescence efficiencies of these compounds remains a challenge, and specific molecular designs to control assembled structures and yield additional physical properties have not been established. The author provides a group of bent-angled bridging ligands to boost photoluminescence efficiency, and successfully introduces for the first time glass formability and strong triboluminescence properties.
This book is an adventure into the computer analysis of three dimensional composite structures using the finite element method (FEM). It is designed for Universities, for advanced undergraduates, for graduates, for researchers, and for practising engineers in industry. The text advances gradually from the analysis of simple beams to arbitrary anisotropic and composite plates and shells; it treats both linear and nonlinear behavior. Once the basic philosophy of the method is understood, the reader may expand its application and modify the computer programs to suit particular needs. The book arose from four years research at the University of Stuttgart, Germany. We present the theory and computer programs concisely and systematically so that they can be used both for teaching and applications. We have tried to make the book simple and clear, and to show the underlying physical and mathematical ideas. The FEM has been in existence for more than 50 years. One of the authors, John Argyris, invented this technique in World War II in the course of the check on the analysis of the swept back wing of the twin engined Meteor Jet Fighter. In this work, he also consistently applied matrix calculus and introduced triangular membrane elements in conjunction with two new definitions of triangular stresses and strains which are now known as the component and total measures. In fact, he was responsible for the original formulation of the matrix force and displacement methods, the forerunners of the FEM.
The principal object of this volume is the creation of a mathematical theory of deformations for elastic anisotropic thermodynamic piezoelastic plates, beams and shells with variable thickness. The book is divided into two parts. The first part deals with problems related to the construction of refined theories (such as those of Richhof-Love, von Karman-A. Fioppl, and Reissner) and their equivalent new models (depending on arbitrary control functions). These are investigated by means of a new variational principle. Methods of reduction, containing regular processes of study of spatial problems, are also studied. Topics treated include problems of solvability, error estimations, convergence of processes in Sobolev spaces and construction of effective schemes of solutions of two-dimensional boundary value problems for systems of partial differential equations. The second part considers stable projective methods, using classical orthogonal polynomials and a new class of spline-functions as coordinate systems, and their numerical realizations for a design of one- and two- dimensional boundary value problems from the first part. These efficient methods increase the possibilities of classical finite-difference, exponential- fitted, variational-discrete and alternating-direction methods. Audience: This book will be of interest to researchers and graduate students whose work involves mechanics, analysis, numerics and computation, mathematical modelling and industrial mathematics, calculus of variations, and design engineering.
This book presents the selected peer-reviewed proceedings of the International Conference on Innovative Engineering Design (ICOIED 2020). The contents provide a multidisciplinary approach for the development of innovative product design and their benefits for the society. The book presents latest advances in various fields like design process, service development, micro/nano technology, sensors and MEMS, and sustainability in engineering design. This book can be useful for students, researchers, and professionals interested in innovative product/process design and development.
This book is composed of chapters that focus specifically on technological developments by distinguished figures in the history of MMS (Mechanism and Machine Science). Biographies of well-known scientists are also included to describe their efforts and experiences and surveys of their work and achievements and a modern interpretation of their legacy are presented. After the first two volumes, the papers in this third volume again cover a wide range within the field of the History of Mechanical Engineering with specific focus on MMS and will be of interest and motivation to the work (historical or not) of many.
To control mechanical processes one needs to obtain information about the state of the system, to process the information, and then to act on the results. Originally, the simplest controls were purely mechanical feedback systems; more complex systems required human intervention. At present, most controls are provided by purely electromechanical systems, but there are also many situations in which one needs sophisticated measurements for later analysis.
Analytical Heat Transfer explains how to analyze and solve conduction, convection, and radiation heat transfer problems. It enables students to tackle complex engineering heat transfer problems prevalent in practice. Covering heat transfer in high-speed flows and unsteady highly turbulent flows, the book also discusses enhanced heat transfer in channels, heat transfer in rotating channels, numerical modeling for turbulent flow heat transfer, and thermally developing heat transfer in a circular tube. The second edition features new content on Duhamel's superposition method, Green's function method for transient heat conduction, finite-difference method for steady state and transient heat conduction in cylindrical coordinates, and laminar mixed convection. It includes two new chapters on laminar-to-turbulent transitional heat transfer and turbulent flow heat transfer enhancement, in addition to end-of-chapter problems. The book bridges the gap between basic heat transfer undergraduate courses and advanced heat transfer graduate courses for a single semester of intermediate heat transfer, advanced conduction/radiation heat transfer, or convection heat transfer. Features: Focuses on analyzing and solving classic heat transfer problems in conduction, convection, and radiation Covers 2-D and 3-D view factor evaluation, combined radiation with conduction and/or convection, and gas radiation optically thin and optically thick limits Features updated content and new chapters on mass and heat transfer analogy, thermally developing heat transfer in a circular tube, laminar-turbulent transitional heat transfer, unsteady highly turbulent flows, enhanced heat transfer in channels, heat transfer in rotating channels, and numerical modeling for turbulent flow heat transfer Provides step-by-step mathematical formula derivations, analytical solution procedures, and demonstration examples Includes end-of-chapter problems with an accompanying Solutions Manual for instructors This book is ideal for undergraduate and graduate students studying basic heat transfer and advanced heat transfer.
Now in its fourth edition, Mechanical Engineering has been revised to be in line with the technical qualifications of the new engineering apprenticeship standards at Level 3. In addition, four new chapters are included that cover static and dynamic engineering systems, fluid systems and additive manufacturing. The text covers eight units of the BTEC L3 Advanced Manufacturing Engineering Development Technical Knowledge qualification, as well as some content in the BTEC National Engineering Syllabus and BTEC L3 Aerospace and Aviation Engineering specialist qualifications. It also covers some of the content in the EAL L3 Advanced Manufacturing Engineering Development Technical Knowledge qualification. To enhance learning, mathematical theory is backed up with numerous examples to work through. There are also activities for students to complete out of the classroom that help put the theory into context. Test your knowledge quizzes throughout the text enable students to test their understanding, while end of unit review questions are helpful for exam revision and course work. This book is ideal for students undertaking Level 3 courses in engineering although students undertaking Level 4 engineering courses will also find the content of the book useful to their studies. Alan Darbyshire is a retired Further Education lecturer and experienced textbook author for Intermediate GNVQ and AVCE. He drafted several of the mechanical engineering units for the BTEC National specifications. Charles Gibson completed an aeronautical mechanical engineering apprenticeship, and then spent 16 years in the Royal Navy maintaining military helicopters before retiring from the military in 2008. Since then, he has worked in Further Education as the Head of Aeronautical Engineering at City of Bristol College where he also taught on several programmes, including BTECs in Aeronautical Engineering and Foundation Degrees. In 2013, he transferred to Yeovil College where he continues to teach on engineering programmes from Level 2 to Level 5. He has also been involved in the writing of engineering technical knowledge qualifications for several engineering apprenticeship standards. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Steam and Its Uses - Including the Steam…
Dionysius 1793-1859 Lardner
Hardcover
R857
Discovery Miles 8 570
Meriam's Engineering Mechanics…
James L. Meriam, L.G. Kraige, …
Paperback
R1,406
Discovery Miles 14 060
|