![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
This thesis addresses selected unsolved problems in the chemical mechanical polishing process (CMP) for integrated circuits using ruthenium (Ru) as a novel barrier layer material. Pursuing a systematic approach to resolve the remaining critical issues in the CMP, it first investigates the tribocorrosion properties and the material removal mechanisms of copper (Cu) and Ru in KIO4-based slurry. The thesis subsequently studies Cu/Ru galvanic corrosion from a new micro and in-situ perspective, and on this basis, seeks ways to mitigate corrosion using different slurry additives. The findings presented here constitute a significant advance in fundamental and technical investigations into the CMP, while also laying the groundwork for future research.
This book introduces and illustrates modeling, sensing, and control methods for analyzing, designing, and developing spherical motors. It systematically presents models for establishing the relationships among the magnetic fields, position/orientation and force/torque, while also providing time-efficient solutions to assist researchers and engineers in studying and developing these motors. In order to take full advantage of spherical motors' compact structure in practical applications, sensing and control methods that utilize their magnetic fields and eliminate the need to install external sensors for feedback are proposed. Further, the book investigates for the first time spherical motors' force/torque manipulation capability, and proposes algorithms enabling the ball-joint-like end-effector for haptic use based on these motors' hybrid position/force actuation modes. While systematically presenting approaches to their design, sensing and control, the book also provides many examples illustrating the implementation issues readers may encounter.
This book provides comprehensive coverage of stress and strain analysis of circular cylinders and pressure vessels, one of the classic topics of machine design theory and methodology. Whereas other books offer only a partial treatment of the subject and frequently consider stress analysis solely in the elastic field, Circular Cylinders and Pressure Vessels broadens the design horizons, analyzing theoretically what happens at pressures that stress the material beyond its yield point and at thermal loads that give rise to creep. The consideration of both traditional and advanced topics ensures that the book will be of value for a broad spectrum of readers, including students in postgraduate, and doctoral programs and established researchers and design engineers. The relations provided will serve as a sound basis for the design of products that are safe, technologically sophisticated, and compliant with standards and codes and for the development of innovative applications.
Plasma engineering applies the unique properties of plasmas (ionized gases) to improve processes and performance over many fields, such as materials processing, spacecraft propulsion, and nanofabrication. "Plasma Engineering" considers this rapidly expanding discipline from a unified standpoint, addressing fundamentals of physics and modeling as well as new real-word applications in aerospace, nanotechnology, and bioengineering. The book starts by reviewing plasma particle collisions, waves, and instabilities, and proceeds to diagnostic tools, such as planar, spherical, and emissive probes, and the electrostatic analyzer, interferometric technique, and plasma spectroscopy. The physics of different types of electrical discharges are considered, including the classical Townsend mechanism of gas electrical breakdown and the Paschen law. Basic approaches and theoretical methodologies for plasma modeling are described, based on the fluid description of plasma solving numerically magnetohydrodynamic (MHD) equations and the kinetic model particle techniques that take into account kinetic interactions among particles and electromagnetic fields. Readers are then introduced to the widest variety of
applications in any text on the market. Space propulsion
applications such as the Hall thruster, pulsed plasma thrusters,
and microthruster are explained. Application of low-temperature
plasmas in nanoscience and nanotechnology, another frontier in
plasma physics, is covered, including plasma-based techniques for
carbon-based nanoparticle synthesis (e.g., fundamental building
blocks like single-walled carbon nanotubes and graphene). Plasma
medicine, an emerging field studying plasmas for therapeutic
applications, is examined as well. The latest original results on
cold atmospheric plasma (CAP) applications in medicine are
presented, with a focus on the therapeutic potential of CAP with a
in selective tumor cell eradication and signaling pathway
deregulation.
"Advances in Imaging and Electron Physics "merges two long-running
serials--"Advances in Electronics and Electron Physics" and
"Advances in Optical and Electron Microscopy." * Contributions from leading authorities * Informs and updates on all the latest developments in the field
This book reports on the physical and mechanical characterization of Recycled Aggregate Concrete (RAC), produced through a partial-to-total replacement of ordinary aggregates with what have been dubbed Recycled Concrete Aggregates (RCAs). It proposes a theoretical framework for understanding the relationships between RCAs and RCA, and for predicting the resulting behavior of RAC. The book demonstrates that in the case of RAC two additional parameters have to be taken into account than with ordinary aggregates, due to the composite nature and higher porosity of RCAs. By extending Abrams' Law for Recycled Aggregate Concrete, it represents a first step in the formulation of a general model for predicting the properties of RAC. The theoretical approach presented here addresses an important gap in the literature and is expected to stimulate new research on the use of this more sustainable form of concrete in structural applications.
Tribology of Polymeric Nanocomposites provides a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and provides rare, focused coverage of their tribological behavior and potential use in tribological applications. Providing engineers and designers with the preparation
techniques, friction and wear mechanisms, property information and
evaluation methodology needed to select the right polymeric
nanocomposites for the job, this unique book also includes valuable
real-world examples of polymeric nanocomposites in action in
tribological applications.
This book draws upon the science of tribology to understand, predict and improve abrasive machining processes. Pulling together information on how abrasives work, the authors, who are renowned experts in abrasive technology, demonstrate how tribology can be applied as a tool to improve abrasive machining processes. Each of the main elements of the abrasive machining system are looked at, and the tribological factors that control the efficiency and quality of the processes are described. Since grinding is by far the most commonly employed abrasive machining process, it is dealt with in particular detail. Solutions are posed to many of the most commonly experienced
industrial problems, such as poor accuracy, poor surface quality,
rapid wheel wear, vibrations, work-piece burn and high process
costs. This practical approach makes this book an essential tool
for practicing engineers. Uses the science of tribology to improve understanding and of abrasive machining processes in order to increase performance, productivity and surface quality of final products. A comprehensive reference on how abrasives work, covering kinematics, heat transfer, thermal stresses, molecular dynamics, fluids and the tribology of lubricants. Authoritative and ground-breaking in its first edition, the 2nd edition includes 30% new and updated material, including new topics such as CMP (Chemical Mechanical Polishing) and precision machining for micro-and nano-scale applications."
Advances in Science and Technology of Mn+1AXn Phases presents a
comprehensive review of synthesis, microstructures, properties,
ab-initio calculations and applications of Mn+1AXn phases and
targets the continuing research of advanced materials and ceramics.
An overview of the current status, future directions, challenges
and opportunities of Mn+1AXn phases that exhibit some of the best
attributes of metals and ceramics is included. Students of
materials science and engineering at postgraduate level will value
this book as a reference source at an international level for both
teaching and research in materials science and engineering. In
addition to students the principal audiences of this book are
ceramic researchers, materials scientists and engineers, materials
physicists and chemists. The book is also an invaluable reference
for the professional materials and ceramics societies.
Endorsed by the International Association for the Advancement of Space Safety (IAASS) and drawing on the expertise of the world s leading experts in the field, Safety Design for Space Operations provides the practical how-to guidance and knowledge base needed to facilitate effective launch-site and operations safety in line with current regulations. With information on space operations safety design currently disparate and difficult to find in one place, this unique reference brings together essential material on: Best design practices relating to space operations, such as the design of spaceport facilities. Advanced analysis methods, such as those used to calculate launch and re-entry debris fall-out risk. Implementation of safe operation procedures, such as on-orbit space traffic management. Safety considerations relating to the general public and the environment in addition to personnel and asset protection. Taking in launch operations safety relating unmanned missions,
such as the launch of probes and commercial satellites, as well as
manned missions, Safety Design for Space Operations provides a
comprehensive reference for engineers and technical managers within
aerospace and high technology companies, space agencies, spaceport
operators, satellite operators and consulting firms.
This book assesses the state-of-the-art in computational fluid dynamics (CFD) applied to ship hydrodynamics and provides guidelines for the future developments in the field based on the Gothenburg 2010 Workshop. It presents ship hull test cases, experimental data and submitted computational methods, conditions, grids and results. Analysis is made of errors for global (resistance, sinkage and trim and self-propulsion) and local flow (wave elevations and mean velocities and turbulence) variables, including standard deviations for global variables and propeller modeling for self-propulsion. The effects of grid size and turbulence models are evaluated for both global and local flow variables. Detailed analysis is made of turbulence modeling capabilities for capturing local flow physics. Errors are also analyzed for head-wave seakeeping and forward speed diffraction, and calm-water forward speed-roll decay. Resistance submissions are used to evaluate the error and uncertainty by means of a systematic verification and validation (V&V) study along with statistical investigations. Post-workshop experimental and computational studies are conducted and analyzed for evaluation of facility biases and to draw more concrete conclusions regarding the most reliable turbulence model, appropriate numerical methods and grid resolution requirements, respectively.
This book focuses on the dissemination of information of permanent interest in thermo-mechanics applications and engineering technology. Contributions have clear relevance to industrial device and a relatively straightforward or feasible path to application. Chapters are sought that have long-term relevance to specific applications including convective heat transfer, fluid mechanics, combustion, aerodynamics, hydrodynamics, turbomachinery and multi-phase flows. In fact, many aspects in industrial operations and daily life are closely related to thermo-mechanics processes. Along with the development of computer industry and the advancement of numerical methods, solid foundation in both hardware and software has been established to study the processes by using numerical simulation methods, which play important roles in the ways of extending research topics, reducing research costs, discovering new phenomena, and developing new technologies. The presented case studies and development approaches aim to provide the readers, such as engineers and PhD students, with basic and applied studies broadly related to the Thermo-Mechanics Applications and Engineering Technology.
This textbook presents finite element methods using exclusively one-dimensional elements. The aim is to present the complex methodology in an easily understandable but mathematically correct fashion. The approach of one-dimensional elements enables the reader to focus on the understanding of the principles of basic and advanced mechanical problems. The reader easily understands the assumptions and limitations of mechanical modeling as well as the underlying physics without struggling with complex mathematics. But although the description is easy it remains scientifically correct. The approach using only one-dimensional elements covers not only standard problems but allows also for advanced topics like plasticity or the mechanics of composite materials. Many examples illustrate the concepts and problems at the end of every chapter help to familiarize with the topics."
This book starts with background concerning three-dimensional integration - including their low energy consumption and high speed image processing - and then proceeds to how to construct them and which materials to use in particular situations. The book covers numerous applications, including next generation smart phones, driving assistance systems, capsule endoscopes, homing missiles, and many others. The book concludes with recent progress and developments in three dimensional packaging, as well as future prospects.
This is the first book of a series that will focus on MMS (Mechanism and Machine Science). This book also presents IFToMM, the International Federation on the Promotion of MMS and its activity. This volume contains contributions by IFToMM officers who are Chairs of member organizations (MOs), permanent commissions (PCs), and technical committees (TCs), who have reported their experiences and views toward the future of IFToMM and MMS. The book is composed of three parts: the first with general considerations by high-standing IFToMM persons, the second chapter with views by the chairs of PCs and TCs as dealing with specific subject areas, and the third one with reports by the chairs of MOs as presenting experiences and challenges in national and territory communities. This book will be of interest to a wide public who wish to know the status and trends in MMS both at international level through IFToMM and in national/local frames through the leading actors of activities. In addition, the book can be considered also a fruitful source to find out "who's who" in MMS, historical backgrounds and trends in MMS developments, as well as for challenges and problems in future activity by IFToMM community and in MMS at large.
This book draws together the most interesting recent results to emerge in mechanical engineering in Russia, providing a fascinating overview of the state of the art in the field in that country which will be of interest to a wide readership. A broad range of topics and issues in modern engineering are discussed, including dynamics of machines, materials engineering, structural strength and tribological behavior, transport technologies, machinery quality and innovations. The book comprises selected papers presented at the conference "Modern Engineering: Science and Education", held at the Saint Petersburg State Polytechnic University in 2016 with the support of the Russian Engineering Union. The authors are experts in various fields of engineering, and all of the papers have been carefully reviewed. The book will be of interest to mechanical engineers, lecturers in engineering disciplines and engineering graduates.
The book contains 26 scientific contributions by leading experts from Russia, Austria, Italy, Japan and Taiwan. It presents an overview on recent developments in Advanced Dynamics and Model Based Control of Structures and Machines. Main topics are nonlinear control of structures and systems, sensing and actuation, active and passive damping, nano- and micromechanics, vibrations and waves.
In recent years, scientists and researchers have been continually searching for efficient and effective ways to harness solar energy for heat and power production. The development of solar technologies and thermal systems are a prevalent area of study, as they represent a vital step in fully optimizing the potential of solar energy. Unfortunately, research is still lacking on the development and application of these solar thermal systems. Modeling and Optimization of Solar Thermal Systems: Emerging Research and Opportunities provides emerging research exploring the theoretical and practical aspects of optimizing the performance of solar thermal technologies using multicriteria decision-making techniques. Featuring coverage on a broad range of topics such as parabolic trough collectors, hybrid solar energy, and thermal technology, this book is ideally designed for practitioners, engineers, academicians, researchers, students, industry professionals, and educators seeking current research on modern modeling methods of solar thermal systems.
This is the 2nd edition of the book, Flow Visualization: Techniques and Examples, which was published by Imperial College Press in 2000. Many of the chapters have been revised and updated to take into consideration recent changes in a number of flow visualization and measurement techniques, including an updated high quality flow gallery. Unique among similar publications, this book focuses on the practical rather than theoretical aspects. Obtaining high quality flow visualization results is, in many ways, more of an art than a science, and experience plays a key deciding role. The depth and breadth of the material will make this book invaluable to readers of all levels of experience in the field. |
You may like...
Rubber-Pad Forming Processes…
Maziar Ramezani, Zaidi Mohd Ripin
Hardcover
R4,052
Discovery Miles 40 520
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
Forsthoffer's Best Practice Handbook for…
William E. Forsthoffer
Hardcover
R5,626
Discovery Miles 56 260
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
|