![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a thorough study of nonlinear elasticity of slender beams and is targeted to researchers, graduate students, and practicing engineers in the fields of structural dynamics, aerospace structures, and mechanical engineering.
Geomaterials exhibit complex but rich mechanical behaviour with a variety of failure modes ranging from diffuse to localized deformation depending on stress, density, microstructure, and loading conditions. These failure modes are a result of an instability of material and/or geometric nature that can be studied within the framework of bifurcation theory. Degradation is another related phenomenon arising from cyclic loading, ageing, weathering, chemical attack, and capillary effects, among others. The methodology of analyzing the various types of instabilities is crucial in the adequate modelling and safe design of numerous problems in geomechanics. The present volume contains a sampling of enlarged versions of papers presented at the International Workshop on Bifurcation and Degradations in Geomaterials (IWBDG 2008) held in Lake Louise, Alberta, Canada, May 28-31, 2008. These papers capture the state-of-the-art in the specialized field of geomechanics and contemporary approaches to solving the central issue of failure. Some engineering applications are presented in the areas of energy resource extraction and soil-machine interaction.
For the first time, the Micropolar Theory of Elasticity is applied to solving a wide variety of problems connected to the specifics of nanomaterials. Namely, their unique physical-mechanical characteristics and behaviors under various stress-induced conditions. These theories have been constructed based on the equations of the classical theory of elasticity as well as other equations that have till now remained untouched in their application to molecular theories of solid deformable media. The book also introduces a new applied micropolar theory of thin shells which is based on Cosserat's pseudo-continuum. It explores the theory's application to a category of nanomaterial shells and plates previously neglected from classical theories due to their unconventional size and structure. Theoretical results are accompanied by solutions of certain problems, essential for various applications. The book consists of six chapters. The first chapter is a review of the essential data on the non-symmetric theory of elasticity. The second and third chapters are devoted to various theories of plate bending and solutions to some basic problems. Chapter four refers to membrane or, so-called, momentary shell theory. Chapter five deals with the theory of very shallow shells. Finally, chapter six presents the geometry of the nonlinear theory of plates and the theory of very shallow shells. The book is intended for researchers, postgraduate students, and engineers, interested in the design of structures from nanomaterials and in the problems of mechanics of deformable bodies, theories of shells and plates, and their applications in micromechanics.
This book provides an insight on advanced methods and concepts for the design and analysis of structures against earthquake loading. This second volume is a collection of 28 chapters written by leading experts in the field of structural analysis and earthquake engineering. Emphasis is given on current state-of-the-art methods and concepts in computing methods and their application in engineering practice. The book content is suitable for both practicing engineers and academics, covering a wide variety of topics in an effort to assist the timely dissemination of research findings for the mitigation of seismic risk. Due to the devastating socioeconomic consequences of seismic events, the topic is of great scientific interest and is expected to be of valuable help to scientists and engineers. The chapters of this volume are extended versions of selected papers presented at the COMPDYN 2011 conference, held in the island of Corfu, Greece, under the auspices of the European Community on Computational Methods in Applied Sciences (ECCOMAS).
The comprehensive reference and textbook serves as a timely, practical introduction to the principles of nanotribology and nanomechanics. Assuming some familiarity with macroscopic tribology, the book comprises chapters by internationally recognized experts, who integrate knowledge of the field from the mechanics and materials-science perspectives. They cover key measurement techniques, their applications, and theoretical modelling of interfaces, each beginning their contributions with macro- and progressing to microconcepts.
During the last decade significant progress has been made in the field of ship stability. Yet in spite of the progress made, numerous scientific and practical challenges still exist with regard to the accurate prediction of extreme motion and capsize dynamics for intact and damaged vessels, the probabilistic nature of extreme events, criteria that properly reflect the physics and operational safety of an intact or damaged vessel, and ways to provide relevant information on safe ship handling to ship operators. This book provides a comprehensive review of the above issues through the selection of representative papers presented at the unique series of international workshops and conferences on ship stability held between 2000 and 2009. The editorial committee has selected papers for this book from the following events: STAB 2000 Conference (Launceston, Tasmania), 5th Stability Workshop (Trieste, 2001), 6th Stability Workshop (Long Island, 2002), STAB 2003 Conference (Madrid), 7th Stability Workshop (Shanghai, 2004), 8th Stability Workshop (Istanbul, 2005), STAB 2006 Conference (Rio de Janeiro), 9th Stability Workshop (Hamburg, 2007), 10th Stability Workshop (Daejeon, 2008), and STAB 2009 Conference (St. Petersburg). The papers have been clustered around the following themes: Stability Criteria, Stability of the Intact Ship, Parametric Rolling, Broaching, Nonlinear Dynamics, Roll Damping, Probabilistic Assessment of Ship Capsize, Environmental Modelling, Damaged Ship Stability, CFD Applications, Design for Safety, Naval Vessels, and Accident Investigations.
This book is a comprehensive and intensive book for graduate students in fluid dynamics as well as scientists, engineers and applied mathematicians. Offering a systematic introduction to the physical theory of vortical flows at graduate level, it considers the theory of vortical flows as a branch of fluid dynamics focusing on shearing process in fluid motion, measured by vorticity. It studies vortical flows according to their natural evolution stages,from being generated to dissipated. As preparation, the first three chapters of the book provide background knowledge for entering vortical flows. The rest of the book deals with vortices and vortical flows, following their natural evolution stages. Of various vortices the primary form is layer-like vortices or shear layers, and secondary but stronger form is axial vortices mainly formed by the rolling up of shear layers. Problems are given at the end of each chapter and Appendix, some for helping understanding the basic theories, and some involving specific applications; but the emphasis of both is always on physical thinking.
This book presents operational and practical issuesof automotive mechatronics with special emphasis on the heterogeneous automotive vehicle systems approach, and is intended as a graduate text as well as a reference for scientists and engineers involved in the design of automotive mechatronic control systems. As the complexity of automotive vehicles increases, so does the dearth of high competence, multi-disciplined automotive scientists and engineers. This book provides a discussion into the type of mechatronic control systems found in modernvehicles and the skills required by automotive scientists and engineers working in this environment. Divided into two volumes and five parts, "Automotive Mechatronics" aimsat improving automotive mechatronics education and emphasises the trainingof students' experimental hands-on abilities, stimulating and promoting experience among high education institutes and produce more automotive mechatronics and automation engineers. The main subject that are treated are: VOLUME I: RBW or XBW unibody or chassis-motion mechatronic control hypersystems;DBW AWD propulsion mechatronic control systems; BBW AWB dispulsion mechatronic control systems; VOLUME II: SBW AWS conversion mechatronic control systems; ABW AWA suspension mechatronic control systems. This volumewas developed for undergraduate and postgraduate students as wellas for professionals involved in all disciplines related to the design or research and development of automotive vehicle dynamics, powertrains, brakes, steering, and shock absorbers (dampers). Basic knowledge of college mathematics, college physics, and knowledge of the functionality of automotive vehicle basic propulsion, dispulsion, conversion and suspension systems is required. "
This book contains applications of micromechanisms and microactuators in several very modern technical fields such as mechatronics, biomechanics, machines, micromachines, robotics and apparatuses. In connection with its topic, the work combines the theoretical results with experimental tests on micromechanisms and microactuators. The book presents the most recent research advances in Machine and Mechanisms Science. It includes the accepted reviewed papers of researchers specialized in the topics of the conference: microactuators and micro-assembly, micro sensors involving movable solids, micro-opto-mechanical devices, mechanical tools for cell and tissue studies, micromanipulation and micro-stages, micro-scale flight and swimming, micro-robotics and surgical tools, micron-scale power generation, miniature manufacturing machines, micromechatronics and micro-mechanisms, biomechanics micro and nano scales and control issues in microsystems. The presented applications of micromechanisms and microactuators in many technical fields will interest industrial companies and encourage scientifical knowledge and cooperation between academia and industry.
This Festschrift is dedicated to Professor Dr.-Ing. habil. Peter
Wriggers on the occasion of his 60th birthday. It contains
contributions from friends and collaborators as well as current
and
Designed to cover the fundamental concepts of thermodynamics used in engineering, the book introduces topics such as the laws of thermodynamics, exergy analysis, thermodynamic cycles, measurement theory, and applications. Using step by step examples and numerous illustrations, the book is designed with a "self-teaching" methodology, including a variety of exercises with corresponding answers to enhance mastery of the content. The book provides an engineer with a basic understanding or review of thermodynamic principles. Features Designed to cover the fundamental concepts of thermodynamics used in engineering Introduces topics such as the laws of thermodynamics, exergy analysis, thermodynamic cycles, measurement theory, and applications Includes a variety of exercises such as conceptual questions for review, and numerical exercises(with answers) to enhance mastery of the content
This and volume no. 47of "Modern Aspects of Electrochemistry" is composed of eight chapters covering topics having relevance both in corrosion science and materials engineering. In particular, the first seven chapters provide comprehensive coverage of recent advances in corrosion science."
This book addresses applications of earthquake engineering for both offshore and land-based structures. It is self-contained as a reference work and covers a wide range of topics, including topics related to engineering seismology, geotechnical earthquake engineering, structural engineering, as well as special contents dedicated to design philosophy, determination of ground motions, shock waves, tsunamis, earthquake damage, seismic response of offshore and arctic structures, spatial varied ground motions, simplified and advanced seismic analysis methods, sudden subsidence of offshore platforms, tank liquid impacts during earthquakes, seismic resistance of non-structural elements, and various types of mitigation measures, etc. The target readership includes professionals in offshore and civil engineering, officials and regulators, as well as researchers and students in this field.
Multifunctional Metallic Hollow Sphere Structures are an emerging new material category, belonging like metal foams to the class cellular metals. Thanks to their advantageous mechanical and sound absorbing properties, Multifunctional Metallic Hollow Sphere Structures are very promising for various applications and our technological knowledge makes them ready for industrial usage. This reference gives a complete overview on this new materials class, the fundamentals, the applications and the perspective for future use. It provides the foundations for a profound understanding (production and processing), their physical properties (surface properties and stalility) and applicaltion (in particular for sound absorption and chemical adsorption in structural parts). The book is written for material scientists, product designers and developers as well as academic researches and scientists.
This book collects the theoretical derivation of a recently presented general variational macroscopic continuum theory of multiphase poroelasticity (VMTPM), together with its applications to consolidation and stress partitioning problems of interest in several applicative engineering contexts, such as in geomechanics and biomechanics. The theory is derived based on a purely-variational deduction, rooted in the least-Action principle, by considering a minimal set of kinematic descriptors. The treatment herein considered keeps a specific focus on the derivation of most general medium-independent governing equations. It is shown that VMTPM recovers paradigms of consolidated use in multiphase poroelasticity such as Terzaghi's stress partitioning principle and Biot's equations for wave propagation. In particular, the variational treatment permits the derivation of a general medium-independent stress partitioning law, and the proposed variational theory predicts that the external stress, the fluid pressure, and the stress tensor work-associated with the macroscopic strain of the solid phase are partitioned according to a relation which, from a formal point of view, turns out to be strictly compliant with Terzaghi's law, irrespective of the microstructural and constitutive features of a given medium. Moreover, it is shown that some experimental observations on saturated sandstones, generally considered as proof of deviations from Terzaghi's law, are ordinarily predicted by VMTPM. As a peculiar prediction of VMTPM, the book shows that the phenomenon of compression-induced liquefaction experimentally observed in cohesionless mixtures can be obtained as a natural implication of this theory by a purely rational deduction. A characterization of the phenomenon of crack closure in fractured media is also inferred in terms of macroscopic strain and stress paths. Altogether the results reported in this monograph exemplify the capability of VMTPM to describe and predict a large class of linear and nonlinear mechanical behaviors observed in two-phase saturated materials.
This book focuses on corrosion and microbial corrosion, providing solutions for these problems based on nanotechnology and nanobiotechnology. It introduces the causes, consequences, cost and control of corrosion processes. It gives a particular emphasis on microbial corrosion of steel and other metals in oil, gas and shipping industries. The book presents the materials vulnerable to such kind of corrosion, and the use of nanomaterials to control it.
Cracks can develop in rotating shafts and can propagate to relevant depths without affecting consistently the normal operating conditions of the shaft. In order to avoid catastrophic failures, accurate vibration analyses have to be performed for crack detection. The identification of the crack location and depth is possible by means of a model based diagnostic approach, provided that the model of the crack and the model of the cracked shaft dynamical behavior are accurate and reliable. This monograph shows the typical dynamical behavior of cracked shafts and presents tests for detecting cracks. The book describes how to model cracks, how to simulate the dynamical behavior of cracked shaft, and compares the corresponding numerical with experimental results. All effects of cracks on the vibrations of rotating shafts are analyzed, and some results of a numerical sensitivity analysis of the vibrations to the presence and severity of the crack are shown. Finally the book describes some crack identification procedures and shows some results in model based crack identification in position and depth. The book is useful for higher university courses in mechanical and energetic engineering, but also for skilled technical people employed in power generation industries.
Presenting original results from both theoretical and numerical viewpoints, this text offers a detailed discussion of the variational approach to brittle fracture. The key to this approach is viewing crack growth as the result of a competition between bulk and surface energy. The variational approach that the authors champion provides an incisive picture of initiation and propagation whose features are detailed. It treats crack evolution from its initiation all the way to the failure of a sample. The authors set forth tested-and-proven models that you can use to gauge crack initiation, crack path, and crack extension for arbitrary geometries and loads. Although the material is mathematical in nature, the authors avoid unnecessary technicalities. They also connect the variational approach with more classical treatments of fracture, demonstrating the distinct results of each approach in simple test settings and via relevant numerical simulations.
This book gathers the latest advances, innovations and applications in the field of robotics and mechatronics, as presented by leading international researchers and engineers at the 6th IFToMM International Symposium on Robotics and Mechatronics (ISRM), held in Taipei, Taiwan, on October 28-30, 2019. It covers highly diverse topics, including mechanism synthesis, analysis, and design, kinematics and dynamics of multibody systems, modelling and simulation, sensors and actuators, novel robotic systems, industrial- and service-related robotics and mechatronics, medical robotics, and historical developments in robotics and mechatronics. The contributions, which were selected through a rigorous international peer-review process, share exciting ideas that spur novel research directions and foster new, multidisciplinary collaborations.
Offering a comprehensive overview of the challenges, risks and options facing the future of mechatronics, this book provides insights into how these issues are currently assessed and managed. Building on the previously published book 'Mechatronics in Action,' it identifies and discusses the key issues likely to impact on future mechatronic systems. It supports mechatronics practitioners in identifying key areas in design, modeling and technology and places these in the wider context of concepts such as cyber-physical systems and the Internet of Things. For educators it considers the potential effects of developments in these areas on mechatronic course design, and ways of integrating these. Written by experts in the field, it explores topics including systems integration, design, modeling, privacy, ethics and future application domains. Highlighting novel innovation directions, it is intended for academics, engineers and students working in the field of mechatronics, particularly those developing new concepts, methods and ideas.
Vibration problems dealing with advanced Mathematical and Numerical Techniques have extensive application in a wide class of problems in ae- nautics, aerodynamics, space science and technology, off-shore engineering and in the design of different structural components of high speed space crafts and nuclear reactors. Different classes of vibration problems dealing with complex geometries and non-linear behaviour require careful attention of scientists and engineers in pursuit of their research activities. Almost all fields of Engineering, Science and Technology, ranging from small domestic building subjected to earthquake and cyclone to the space craft venturing towards different planets, from giant ship to human skeleton, encounter problems of vibration and dynamic loading. This being truly an interdisciplinary field, where the mathematicians, phy- cists and engineers could interface their innovative ideas and creative thoughts to arrive at an appropriate solution, Bengal Engineering and Science University, Shibpur, India, a premier institution for education and research in engineering, science and technology felt it appropriate to organize 8th International C- ference on "Vibration Problems (ICOVP-2007)" as a part of its sesquicentenary celebration. The conference created a platform and all aspects of vibration phenomenon with the focus on the state-of-the art in theoretical, experimental and applied research areas were addressed and the scientific interaction, p- ticipated by a large gathering including eminent personalities and young research workers, generated many research areas and innovative ideas.
This book presents high-quality papers from the Seventh Asia International Symposium on Mechatronics (AISM 2019). It discusses the latest technological trends and advances in electromechanical coupling and environmental adaptability design for electronic equipment, sensing and measurement, mechatronics in manufacturing and automation, micro-mechatronics, energy harvesting & storage, robotics, automation and control systems. It includes papers based on original theoretical, practical and experimental simulations, development, applications, measurements, and testing. The applications and solutions discussed here provide excellent reference material for future product developments. |
![]() ![]() You may like...
Book vs. Shark - the new series from the…
Paul Linnet, Sue Hendra
Paperback
R166
Discovery Miles 1 660
Chemical Processes in Marine…
Antonio Gianguzza, Ezio Pelizzetti, …
Hardcover
R8,975
Discovery Miles 89 750
|