![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.
Nontraditional machining employs processes that remove material by various methods involving thermal, electrical, chemical and mechanical energy or even combinations of these. Nontraditional Machining Processes covers recent research and development in techniques and processes which focus on achieving high accuracies and good surface finishes, parts machined without burrs or residual stresses especially with materials that cannot be machined by conventional methods. With applications to the automotive, aircraft and mould and die industries, Nontraditional Machining Processes explores different aspects and processes through dedicated chapters. The seven chapters explore recent research into a range of topics including laser assisted manufacturing, abrasive water jet milling and hybrid processes. Students and researchers will find the practical examples and new processes useful for both reference and for developing further processes. Industry professionals and materials engineers will also find Nontraditional Machining Processes to be a source of ideas and processes for development and industrial application.
This book presents fractography and failure analysis at a level that is accessible for non-expert readers, without losing scientific rigor. It offers a comprehensive description of fracture surfaces in engineering materials, with an emphasis on metals, and of the methodology for the observation of fracture surfaces. It also discusses in detail the main fracture mechanisms and their corresponding fracture surfaces, including brittle, ductile, fatigue, and environmental fractures. The last chapter is dedicated to the use of fractography in determining of the causes component failure. In modern engineering, the analysis of fractured components is a common practice in many fields, such as integrity management systems, materials science research, and failure investigations. As such this book is useful for engineers, scientists, engineering students, loss adjuster surveyors and any professional dealing with fractured components.
By the dawn of the new millennium, robotics has undergone a major transformation in scope and dimensions. This expansion has been brought about by the maturity of the field and the advances in its related technologies. From a largely dominant industrial focus, robotics has been rapidly expanding into the challenges of the human world. The new generation of robots is expected to safely and dependably co-habitat with humans in homes, workplaces, and communities, providing support in services, entertainment, education, healthcare, manufacturing, and assistance. Beyond its impact on physical robots, the body of knowledge robotics has produced is revealing a much wider range of applications reaching across diverse research areas and scientific disciplines, such as: biomechanics, haptics, neuros- ences, virtual simulation, animation, surgery, and sensor networks among others. In return, the challenges of the new emerging areas are proving an abundant source of stimulation and insights for the field of robotics. It is indeed at the intersection of disciplines that the most striking advances happen. The goal of the series of Springer Tracts in Advanced Robotics (STAR) is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research developments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field.
Erosive wear is characterized by successive loss of material from the surface due to the continuous impact of solid particles. This type of wear affects numerous industries, such as power generation, mining, and the pneumatic transportation of solids. The worst case scenario normally occurs where there is a combination of both erosion and oxidation, especially at high temperatures. In order to minimize damage caused by erosive wear, many authors propose the use of better bulk materials or surface coatings, and generally cermets are suggested. Various researchers have conducted experiments to study the wear mechanisms occurring in this kind of materials, but most of these experiments do not lead to similar results; in fact, there is no accordance among the authors, and moreover, some wear variables are ignored. In this book, studies undertaken in this field by several investigators have been discussed extensively. At the end of it, table reviews are suggested to summarize the most important mechanisms of the erosive wear in bulk and coating cermets.
Rapid prototyping (RP) has revolutionized how prototypes are made and small batch manufacturing is carried out. With rapid prototyping, the strategies used to produce a part change a number of important considerations and limitations previously faced by tool designers and engineers. Now in its third edition, this textbook is still the definitive text on RP. It covers the key RP processes, the available models and specifications, and their principles, materials, advantages and disadvantages. Examples of application areas in design, planning, manufacturing, biomedical engineering, art and architecture are also given. The book includes several related problems so that the reader can test his or her understanding of the topics. New to this edition, the included CD-ROM presents animated illustrations of the working principles of today's key RP processes.
Electromechanical Properties in Composites Based on Ferroelectrics discusses the latest theoretical and experimental results on the effective electromechanical (piezoelectric, dielectric and elastic) properties in piezo-composites based on ferroelectrics. For the last decades, single-crystal, bulk ceramic and thin-film ferroelectrics have found a number of various applications as a result of their remarkable piezoelectric properties. Recent work in the field of smart materials demonstrates that both ferroelectricity and piezoelectricity represent an important link between solid state science and engineering. Electromechanical Properties in Composites Based on Ferroelectrics investigates the problem of prediction and non-monotonicity of the effective electromechanical properties in different two- and three-component composites based on ferroelectric ceramics and relaxor-ferroelectric single crystals. Central to the book is the analysis of interrelations between the electromechanical constants of the components, and the description of different analytical schemes for averaging the properties of these materials with different connectivity and microgeometrical characteristics. The book not only highlights the advantages of different methods for predicting the electromechanical properties and choosing the optimum components, but also demonstrates the non-trivial behavior of specific composite architectures and their parameters which are valuable for transducer, sensor, actuator, hydroacoustic, and other applications. Electromechanical Properties in Composites Based on Ferroelectrics is a valuable resource for engineers, researchers, and postgraduate students in the field offerroelectric, piezoelectric and related materials. This book will be of benefit to all specialists looking to understand the detailed behavior and electromechanical response of advanced composite materials.
This book contains selected papers of the 11th OpenFOAM (R) Workshop that was held in Guimaraes, Portugal, June 26 - 30, 2016. The 11th OpenFOAM (R) Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM (R) Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM (R) technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM (R) (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM (R) provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.
This book presents an up-to-date overview on the main classes of metallic materials currently used in aeronautical structures and propulsion engines and discusses other materials of potential interest for structural aerospace applications. The coverage encompasses light alloys such as aluminum-, magnesium-, and titanium-based alloys, including titanium aluminides; steels; superalloys; oxide dispersion strengthened alloys; refractory alloys; and related systems such as laminate composites. In each chapter, materials properties and relevant technological aspects, including processing, are presented. Individual chapters focus on coatings for gas turbine engines and hot corrosion of alloys and coatings. Readers will also find consideration of applications in aerospace-related fields. The book takes full account of the impact of energy saving and environmental issues on materials development, reflecting the major shifts that have occurred in the motivations guiding research efforts into the development of new materials systems. Aerospace Alloys will be a valuable reference for graduate students on materials science and engineering courses and will also provide useful information for engineers working in the aerospace, metallurgical, and energy production industries.
In a world suffering from an ageing population and declining birth rate, service robotics and mechatronics have an increasingly vital role to play in maintaining a safe and sustainable environment for everyone. Mechatronics can be used in the reconstruction or restoration of various environments which we rely upon to survive; for example the reconstruction of a city after an earthquake, or the restoration of polluted waters This collection of papers was originally presented at the 7th International Conference on Machine Automation, 2008, in Awaji, Japan, and covers a variety of new trends in service robotics and mechatronics. Service Robotics and Mechatronics showcases the latest research in the area to provide researchers and scientists with an up-to-date source of knowledge and basis for further study, as well as offering graduate students valuable reference material.
This book is based on the 55th International Conference of Machine Design Departments 2014 (ICMD 2014) which was hosted by the Czech Technical University in September 2014. It features scientific articles which solve progressive themes from the field of machine design. The book addresses a broad range of themes including tribology, hydraulics, materials science, product innovation and experimental methods. It presents the latest interdisciplinary high-tech work. People with an interest in the latest research results in the field of machine design and manufacturing engineering will value this book with contributions of leading academic scientists and experts from all around the world.
After two succesful conferences held in Innsbruck (Prof. Manfred Husty) in 2006 and Cassino in 2008 (Prof Marco Ceccarelli) with the participation of the most important well-known scientists from the European Mechanism Science Community, a further conference was held in Cluj Napoca, Romania, in 2010 (Prof. Doina Pisla) to discuss new developments in the field. This book presents the most recent research advances in Mechanism Science with different applications. Amongst the topics treated are papers on Theoretical kinematics, Computational kinematics, Mechanism design, Mechanical transmissions, Linkages and manipulators, Mechanisms for biomechanics, Micro-mechanisms, Experimental mechanics, Mechanics of robots, Dynamics of multi-body systems, Dynamics of machinery, Control issues of mechanical systems, Novel designs, History of mechanism science etc.
Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, minimize downtime and reduce maintenance costs. The text introduces various signal-processing and pre-processing techniques, wavelets and principal component analysis, for example, together with their uses in condition monitoring and details the development of effective feature extraction techniques classified into frequency-, time-frequency- and time-domain analysis. Data generated by these techniques can then be used for condition classification employing tools such as: * fuzzy systems; rough and neuro-rough sets; neural and Bayesian networks;hidden Markov and Gaussian mixture models; and support vector machines.
"The mathematical investigations referred to bring the whole apparatus of a great science to the examination of the properties of a given mechanism, and have accumulated in this direction rich material, of enduring and increasing value. What is left unexamined is however the other, immensely deeper part of the problem, the question: How did the mechanism, or the elements of which it is composed, originate? What laws govern its building up? Is it indeed formed according to any laws whatever? Or have we simply to accept as data what invention gives us, the analysis of what is thus obtained being the only scientific problem left - as in the case of natural history?" Reuleaux, F., Theoretische Kinematik, Braunschweig: Vieweg, 1875 Reuleaux, F., The Kinematics of Machinery, London: Macmillan, 1876 and New York: Dover, 1963 (translated by A.B.W. Kennedy) This book represents the second part of a larger work dedicated to the structural synthesis of parallel robots. Part 1 already published in 2008 (Gogu 2008a) has presented the methodology proposed for structural synthesis. This book focuses on various topologies of translational parallel robots systematically generated by using the structural synthesis approach proposed in Part 1. The originality of this work resides in the fact that it combines the new formulae for mobility connectivity, redundancy and overconstraints, and the evolutionary morphology in a unified approach of structural synthesis giving interesting innovative solutions for parallel mechanisms.
This book presents a comprehensive study of the nonlinear statics and dynamics of composite beams and consists of solutions with and without active elements embedded in the beams. The static solution provides the initial conditions for the dynamic analysis. The dynamic problems considered include the analyses of clamped (hingeless) and articulated (hinged) accelerating rotating beams. Two independent numerical solutions for the steady state and the transient responses are presented. The author illustrates that the transient solution of the nonlinear formulation of accelerating rotating beam converges to the steady state solution obtained by the shooting method. Other key areas considered include calculation of the effect of perturbing the steady state solution, coupled nonlinear flap-lag dynamics of a rotating articulated beam with hinge offset and aerodynamic damping, and static and dynamic responses of nonlinear composite beams with embedded anisotropic piezo-composite actuators. The book is intended as a thorough study of nonlinear elasticity of slender beams and is targeted to researchers, graduate students, and practicing engineers in the fields of structural dynamics, aerospace structures, and mechanical engineering.
The book provides readers with a snapshot of recent research and technological trends in the field of condition monitoring of machinery working under a broad range of operating conditions. Each chapter, accepted after a rigorous peer-review process, reports on an original piece of work presented and discussed at the 4th International Conference on Condition Monitoring of Machinery in Non-stationary Operations, CMMNO 2014, held on December 15-16, 2014, in Lyon, France. The contributions have been grouped into three different sections according to the main subfield (signal processing, data mining or condition monitoring techniques) they are related to. The book includes both theoretical developments as well as a number of industrial case studies, in different areas including, but not limited to: noise and vibration; vibro-acoustic diagnosis; signal processing techniques; diagnostic data analysis; instantaneous speed identification; monitoring and diagnostic systems; and dynamic and fault modeling. This book not only provides a valuable resource for both academics and professionals in the field of condition monitoring, it also aims at facilitating communication and collaboration between the two groups.
This Festschrift is dedicated to Professor Dr.-Ing. habil. Peter
Wriggers on the occasion of his 60th birthday. It contains
contributions from friends and collaborators as well as current
and
This and volume no. 47of "Modern Aspects of Electrochemistry" is composed of eight chapters covering topics having relevance both in corrosion science and materials engineering. In particular, the first seven chapters provide comprehensive coverage of recent advances in corrosion science."
Multifunctional Metallic Hollow Sphere Structures are an emerging new material category, belonging like metal foams to the class cellular metals. Thanks to their advantageous mechanical and sound absorbing properties, Multifunctional Metallic Hollow Sphere Structures are very promising for various applications and our technological knowledge makes them ready for industrial usage. This reference gives a complete overview on this new materials class, the fundamentals, the applications and the perspective for future use. It provides the foundations for a profound understanding (production and processing), their physical properties (surface properties and stalility) and applicaltion (in particular for sound absorption and chemical adsorption in structural parts). The book is written for material scientists, product designers and developers as well as academic researches and scientists.
Now in paperback, this is an excellent overview of all standards
for users and producers of fasteners and equipment designers who
must specify fasteners.
|
You may like...
Rubber-Pad Forming Processes…
Maziar Ramezani, Zaidi Mohd Ripin
Hardcover
R4,052
Discovery Miles 40 520
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Forsthoffer's Best Practice Handbook for…
William E. Forsthoffer
Hardcover
R5,626
Discovery Miles 56 260
Internal Combustion Engines…
Institution of Mechanical Engineers
Paperback
R4,908
Discovery Miles 49 080
|