![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Regularized equations of motion can improve numerical integration for the propagation of orbits, and simplify the treatment of mission design problems. This monograph discusses standard techniques and recent research in the area. While each scheme is derived analytically, its accuracy is investigated numerically. Algebraic and topological aspects of the formulations are studied, as well as their application to practical scenarios such as spacecraft relative motion and new low-thrust trajectories.
This book describes current, competitive coating technologies for vehicles. The authors detail how these technologies impact energy efficiency in engines and with increased use of lightweight materials and by varying coatings applications can resolve wear problems, resulting in the increased lifecycle of dies and other vehicle components.
This book provides excellent techniques for detecting and evaluating biofilms: sticky films on materials that are formed by bacterial activity and produce a range of industrial and medical problems such as corrosion, sanitary problems, and infections. Accordingly, it is essential to control biofilms and to establish appropriate countermeasures, from both industrial and medical viewpoints. This book offers valuable, detailed information on these countermeasures. It also discusses the fundamentals of biofilms, relates various substrates to biofilms, and presents a variety of biofilm reactors. However, the most important feature of this book (unlike others on the market) is its clear focus on addressing the practical aspects from an engineering viewpoint. Therefore, it offers an excellent practical guide for engineers and researchers in various fields, and can also be used as a great academic textbook.
Optimize plant asset safety and reliability while minimizing operating costs with this invaluable guide to the engineering, operation and maintenance of rotating equipment Based upon his multi-volume Rotating Equipment Handbooks, Forsthoffer s Best Practice Handbook for Rotating Machinery summarises, expands and updates the content from these previous books in a convenient all-in-one volume. Offering comprehensive technical coverage and insider information on best practices derived from lessons learned in the engineering, operation and maintenance of a wide array of rotating equipment, this new title presents: A unique "Best Practice" and "Lessons Learned" chapter framework, providing bite-sized, troubleshooting instruction on complex operation and maintenance issues across a wide array of industrial rotating machinery. Five chapters of completely new material combined with updated material from earlier volumes, making this the most comprehensive and up-to-date handbook for rotary equipment currently available. Intended for maintenance, engineering, operation and management, Forsthoffer s Best Practice Handbook for Rotating Machinery is a one-stop resource, packed with a lifetime s rotating machinery experience, to help you improve efficiency, safety, reliability and cost.
Control Methodology: Robust Exponential Convergence with Bounded Controllers (M. Corless, G. Leitmann). Second Variation Conditions for the Optimal Control Problem with Normalized Final Time (D.G. Hull, C.N. D'Souza). A New Tool for Robust Control (A.G. Soldatos et al.). Applications to Aerospace Systems: PersuitEvasion Differential Games Applied to a 3Dimensional Missle Guidance Problem Using the Liapunov Approach (N.J.C. Greenwood). Periodic Optimal Endurance Cruise with Variable Camber Control (G. Sachs, R. Mehlhorn). Control of Mechanical Systems: Sequential Design of a Linear Quadratic Controller for the Deep Space Network Antennas (W. Gawronski). Maneuvering and Control of Space Structures (L.M. Meirovitch). Computational Techniques: Jacobian Motion (W. Stadler). Neural Modeling and Identification of Nonlinear Systems in an Abstract Space Setting (R.J.P. de Figueiredo). 15 additional articles. Index.
Proceedings of the Ninth International Conference on Computational Methods in Water Resources, held at the University of Colorado at Denver, USA, June 1992. Co-published with Computational Mechanics Publications, UK.
The fascinating rainbow colors we see in soap film not only delight us; they also help us understand the physical essence of nature. In this dissertation, the author presents his studies on the interactions between flexible bodies and ambient fluids, a topic reflected in nature, in everyday life and in various industrial applications. By investigating this topic, he reveals the mechanism of flow-induced vibration of flexible bodies, the process of energy exchange between flexible bodies and fluids and the way flexible bodies interact with each other in flowing fluids. These studies not only allow us to understand nature better, but can also help us invent new machines and improve existing devices to glean more energy from nature.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http:
//extras.springer.com/.
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.
The book covers the state-of-the-art treatment in modelling and experimental investigation of the mechanical behaviour of cellular and porous materials. Starting from the continuum mechanical modelling, to the numerical simulation, several important questions related to applications such as the fracture and impact behaviour are covered.
This book contains selected papers of the 11th OpenFOAM (R) Workshop that was held in Guimaraes, Portugal, June 26 - 30, 2016. The 11th OpenFOAM (R) Workshop had more than 140 technical/scientific presentations and 30 courses, and was attended by circa 300 individuals, representing 180 institutions and 30 countries, from all continents. The OpenFOAM (R) Workshop provided a forum for researchers, industrial users, software developers, consultants and academics working with OpenFOAM (R) technology. The central part of the Workshop was the two-day conference, where presentations and posters on industrial applications and academic research were shown. OpenFOAM (R) (Open Source Field Operation and Manipulation) is a free, open source computational toolbox that has a larger user base across most areas of engineering and science, from both commercial and academic organizations. As a technology, OpenFOAM (R) provides an extensive range of features to solve anything from complex fluid flows involving chemical reactions, turbulence and heat transfer, to solid dynamics and electromagnetics, among several others. Additionally, the OpenFOAM technology offers complete freedom to customize and extend its functionalities.
Mechanical Engineering Science provides an introduction to the basic science and mechanics required by mechanical engineering students in their studies; it links in with and complements the authors' companion volume Applied Mechanics. This edition of a well-known classic text has been completely updated and includes new material giving extended coverage of power generation and prime movers as well as the topical subjects of renewable energy sources, satellites and emission of pollutants.
This book presents a hybrid approach to the mechanics of thin
bodies. Classical theories of rods, plates and shells with
constrained shear are based on asymptotic splitting of the
equations and boundary conditions of three-dimensional elasticity.
The asymptotic solutions become accurate as the thickness
decreases, and the three-dimensional fields of stresses and
displacements can be determined. The analysis includes practically
important effects of electromechanical coupling and material
inhomogeneity. The extension to the geometrically nonlinear range
uses the direct approach based on the principle of virtual work.
Vibrations and buckling of pre-stressed structures are studied with
the help of linearized incremental formulations, and direct tensor
calculus rounds out the list of analytical techniques used
throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book.
"Proceedings of the 8th International Symposium on Heating,
Ventilation and Air Conditioning" is based on the 8th International
Symposium of the same name (ISHVAC2013), which took place in Xi an
on October 19-21, 2013. The conference series was initiated at
Tsinghua University in 1991 and has since become the premier
international HVAC conference initiated in China, playing a
significant part in the development of HVAC and indoor
environmental research and industry around the world. This
international conference provided an exclusive opportunity for
policy-makers, designers, researchers, engineers and managers to
share their experience. Considering the recent attention on
building energy consumption and indoor environments, ISHVAC2013
provided a global platform for discussing recent research on and
developments in different aspects of HVAC systems and components,
with a focus on building energy consumption, energy efficiency and
indoor environments. These categories span a broad range of topics,
and the proceedings provide readers with a good general overview of
recent advances in different aspects of HVAC systems and related
research. As such, they offer a unique resource for further
research and a valuable source of information for those interested
in the subject.
The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.
In-situ scattering and diffraction measurements using synchrotron and neutron beam lines have become a viable tool to look at the non-equilibrium processing of advanced materials. This volume presents the subject from the theoretical and experimental standpoint, in order to provide a closer insight into the different synchrotron and neutron diffraction techniques as well as innovative microscopy techniques. It addresses the following items: - Phase detection and quantification - In-situ welding experiments - Stress/strain build-up - Model development and Simulation - Analysis tools and programming
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristics due to rotor internal damping and instabilities due to asymmetric shaft stiffness and thermal unbalance behavior.
This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.
This book contains the selected and peer-reviewed manuscripts that were presented in the Conferences on Multidisciplinary Engineering and Technology (COMET 2019), held at the University Kuala Lumpur Malaysian Spanish Institute (UniKL MSI), Kedah, Malaysia from September 18 to 19, 2019. The aim of COMET 2019 was to present current and on-going research being carried out in the field of mechanical, manufacturing, electrical and electronics and general studies for engineering and technology. Besides, this book also contains the manuscripts from the System Engineering and Energy Laboratory (SEELAB) research cluster, UniKL which is actively doing research mainly focused on artificial intelligence, metal air batteries, advanced battery materials and energy material modelling fields. This volume is the third edition of the progress in engineering technology, Advanced Structured Materials which provides in-depth ongoing research activities among academia of UniKL MSI. Lastly, it is hoped to foster cooperation among organisations and research in the covered fields. |
![]() ![]() You may like...
Petri Nets in Science and Engineering
Raul Campos-Rodriguez, Mildreth Alcaraz-Mejia
Hardcover
R3,321
Discovery Miles 33 210
Digital Twins and Healthcare - Trends…
Loveleen Gaur, Noor Zaman Jhanjhi
Hardcover
R11,149
Discovery Miles 111 490
|