![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
This monograph focuses on methanol and its utilization in transportation sector, namely in spark ignition (SI) engines. The contents focus on methanol production and presents a variety of production technologies from different feedstocks. The potential of methanol utilization in transportation in SI engines is discussed, its challenges, limitations, aspects related to its utilization and current global use of methanol are also presented. The book also contains chapters related to pollutant formation and exhaust emissions from methanol fuelled SI engines, one chapter is focused specifically on formaldehyde emissions, which possesses one of the greatest challenges of methanol use in IC engines. Readers will learn about the production aspects of methanol, its potential as a sustainable fuel, its utilization in SI engine and the effect of methanol and its utilization techniques on engine performance, combustion, exhaust emissions, efficiency and other important parameters. This volume will be a useful guide for professionals, post-graduate students involved in alternative fuels, spark ignition engines, and environmental research.
The International Symposium on the History of Machines and Mechanisms is the main activity of the Permanent Commission (PC) for the History of Mechanism and Machine Science (HMM) of the International Federation for the Promotion of Mechanism and Machine Science (IFToMM). The first symposium, HMM2000, was initiated by Dr. Marco Ceccarelli and was held at the University of Cassino (Cassino, Italy) on May 11-13, 2000. The second symposium, HMM2004, was chaired by Dr. Marco Ceccarelli and held at the same venue on May 12-15, 2004. The third symposium, HMM2008, was chaired by Dr. Hong-Sen Yan and held at the National Cheng Kung University (Tainan, Taiwan) on November 11-14, 2008. The mission of IFToMM is to promote research and development in the field of machines and mechanisms by theoretical and experimental methods, along with their practical applications. The aim of HMM2008 is to establish an international forum for presenting and discussing historical developments in the field of Mechanism and Machine Science (MMS). The subject area covers all aspects of the development of HMM, such as machine, mechanism, kinematics, design method, etc., that are related to people, events, objects, anything that assisted in the development of the HMM, and presented in the forms of reasoning and ar- ments, demonstration and identification, and description and evaluation.
Nonlinear phenomena should play a crucial role in the design and control of engineering systems and structures as they can drastically change the prevailing dynamical responses. This book covers theoretical and applications-based problems of nonlinear dynamics concerned with both discrete and continuous systems of interest in civil and mechanical engineering. They include pendulum-like systems, slender footbridges, shape memory alloys, sagged elastic cables and non-smooth problems. Pendulums can be used as a dynamic absorber mounted in high buildings, bridges or chimneys. Geometrical nonlinearities introduced by pendulum motion may change the system dynamics, and entail a rapid increase of the oscillations of both the structure and the pendulum, leading to full pendulum rotation or chaotic dynamics. To magnetorheological damping is proposed. Nonlinear mechanics has to be used to explain undesired response in slender footbridges, such as that occurred in the famous event of the London Millenium Bridge. The observed phenomena can be explained by an analytical nonlinear discrete-time model. Shape memory alloys (SMAs) exhibit very interesting nonlinear thermo-mechanical properties such as shape memory effect and superelasticity. SMA elements integrated within composite beams or plates can be used for active modification of structure properties e.g. by affecting their natural frequencies. Finite amplitude, resonant, forced dynamics of sagged, horizontal or inclined, elastic cables have recently undergone meaningful research advances concerned with modelling, analysis, response, and nonlinear/nonregular phenomena. A variety of features of nonlinear multimodal interaction in different resonance conditions are comparatively addressed. Non-smooth systems are very common in engineering practice. Three mechanical engineering problems are presented: (i) a vibro-impact system in the form of a moling device, (ii) the influence of the opening and closing of a fatigue crack on the host system dynamics, and (iii) nonlinear interactions between a rotor and snubber ring system. This book is aimed at a wide audience of engineers and researchers working in the field of nonlinear structural vibrations and dynamics, and undergraduate and postgraduate students reading mechanical, aerospace and civil engineering.
This book elaborates the corrosion testing and assessment methods for the aluminum alloy vessel in the service and internal environment. The emphasis is placed on the research of general materials corrosion characteristics, electrochemical protection design, surface protection, coating and painting, etc. This book helps readers to keep abreast of the whole technology system of the corrosion prevention and control of aluminum alloy vessel, especially the systematic engineering view of life cycle corrosion control for the vessel is of particular interest to readers.
Optimal analysis is defined as an analysis that creates and uses
sparse, well-structured and well-conditioned matrices. The focus is
on efficient methods for eigensolution of matrices involved in
static, dynamic and stability analyses of symmetric and regular
structures, or those general structures containing such components.
Powerful tools are also developed for configuration processing,
which is an important issue in the analysis and design of space
structures and finite element models.
By having its origin in analytical and continuum mechanics, as well as in computer science and applied mathematics, multibody dynamics provides a basis for analysis and virtual prototyping of innovative applications in many fields of contemporary engineering. With the utilization of computational models and algorithms that classically belonged to different fields of applied science, multibody dynamics delivers reliable simulation platforms for diverse highly-developed industrial products such as vehicle and railway systems, aeronautical and space vehicles, robotic manipulators, smart structures, biomechanical applications and nano-technologies. The chapters of this volume are based on the revised and extended versions of the selected scientific papers from amongst 255 original contributions that have been accepted to be presented within the program of the distinguished international ECCOMAS conference. It reflects state-of-the-art in the advances of multibody dynamics, providing excellent insight in the recent scientific developments in this prominent field of computational mechanics and contemporary engineering.
This book focuses on the nonlinear behaviour of thin-wall shells
(single- and multilayered with delamination areas) under various
uniform and non-uniform loadings.
This volume covers the interdisciplinary field of disaster mitigatition against earthquakes with special emphasis on prevention of total collapse of existing low rise buildings towards reduction of life losses and economical assets. Rehabilitation of thousands of low-rise buildings in many big cities located in earthquake prone areas, is practically impossible even though there are experimentally and analytically approved intervention techniques to protect these existing buildings. It is simply not possible to find a proper way and proper amount of financial support to do this job. It will be more realistic to change the target to be achieved in a relatively short time, especially if time shortage starts to become the most critical issue. The new target can be specified as the prevention of total collapse of low-rise low-cost existing buildings, at least to save as much lives and property as possible. Simple prescriptive techniques, which can be implemented by the building owners, should be prepared. The cost of the improvement techniques, all kinds of legal, economical and social issues for convincing people, and promotions such as tax exemptions should be discussed in detail. Writers of all chapters are leading researchers and engineers working in the field of structural and earthquake engineering. The book will start with an introduction chapter written by Prof. Helmut Krawinkler of Stanford University. In this chapter, past and present of studies towards seismically safe design and construction will be introduced, as well as potential future trends in structural and earthquake engineering. In other chapters, different subjects will be presented under three main titles, namely; determination of seismic risks, seismic safety assessment of existing buildings, and measures for prevention of total collapse.
"Statics and Dynamics of Rigid Bodies" presents an interdisciplinary approach to mechanical engineering through a close evaluation of the statics and dynamics of rigid bodies, presenting a concise introduction to both. This volume bridges the gap of interdisciplinary published texts linking fields like mechatronics and robotics with multi-body dynamics in order to provide readers with a clear path to understanding numerous sub-fields of mechanical engineering. Three-dimensional kinematics, rigid bodies in planar spaces and numerous vector and matrix operations are presented in order to provide a comprehensive understanding of mechanics through dynamics and rigid bodies.
Contact mechanics is an active research area with deep theoretical and numerical roots. The links between nonsmooth analysis and optimization with mechanics have been investigated intensively during the last decades, especially in Europe. The study of complementarity problems, variational -, quasivariational- and hemivariational inequalities arising in contact mechanics and beyond is a hot topic for interdisciplinary research and cooperation. The needs of industry for robust solution algorithms suitable for large scale applications and the regular updates of the respective elements in major commercial computational mechanics codes, demonstrate that this interaction is not restricted to the academic environment. The contributions of this book have been selected from the participants of the CMIS 2009 international conference which took place in Crete and continued a successful series of specialized contact mechanics conferences.
This book addresses a range of basic and essential topics, selected from the author's teaching and research activities, offering a comprehensive guide in three parts: Statics, Kinematics and Kinetics. Chapter 1 briefly discusses the history of classical and modern mechanics, while Chapter 2, presents preliminary knowledge, preparing readers for the subsequent chapters. Chapters 3 to 7 introduce statics, force analysis, simplification of force groups, equilibrium of the general coplanar force group, and the center of the parallel force group. The Kinematics section (Chapters 8 to 10), covers the motion of a particle, basic motion and planar motion of a rigid body. Lastly, the Kinetics section (Chapters 11 to 14) explores Newton's law of motion, theorem of momentum, theorem of angular momentum, and theorem of kinetic energy. With numerous examples from engineering, illustrations, and step-by-step tutorials, the book is suitable for both classroom use and self-study. After completing the course, students will be able to simplify complex engineering structures and perform force and motion analyses on particles and structures, preparing them for further study and research. The book can be used as a textbook for undergraduate courses on fundamental aspects of theoretical mechanics, such as aerospace, mechanical engineering, petroleum engineering, automotive and civil engineering, as well as material science and engineering.
The bookopens with a derivation of kinematically nonlinear 3-D
continuum mechanics for solids.
An understanding of friction and wear behavior of materials is crucial in order to improve their performance and durability. New research is providing the opportunity to solve common problems relating to the development of materials, surface modification, coatings, and processing methods across industrie. Processing Techniques and Tribological Behavior of Composite Materials provides relevant theoretical frameworks and the latest empirical research findings on the strategic role of composite tribology in a variety of settings. This book is intended for students, researchers, academicians, and professionals working in industries where wear reduction and performance enhancement of machines and machine elements is essential to success.
Computational elastohydrodynamics, a part of tribology, has existed
happily enough for about fifty years without the use of accurate
models for the rheology of the liquids used as lubricants. For low
molecular weight liquids, such as low viscosity mineral oils, it
has been possible to calculate, with precision, the film thickness
in a concentrated contact provided that the pressure and
temperature are relatively low, even when the pressure variation of
viscosity is not accurately modelled in detail. Other successes
have been more qualitative in nature, using effective properties
which come from the fitting of parameters used in calculations to
experimental measurements of the contact behaviour, friction or
film thickness.
This book is an attempt to provide a uni?ed methodology to derive models for fatigue life. This includes S-N, ?-N and crack propagation models. This is not a conventional book aimed at describing the fatigue fundamentals, but rather a book in which the basic models of the three main fatigue approaches, the stress-based, the strain-based and the fracture mechanics approaches, are contemplated from a novel and integrated point of view. On the other hand, as an alternative to the preferential attention paid to deterministic models based on the physical, phenomenological and empirical description of fatigue, their probabilistic nature is emphasized in this book, in which stochastic fatigue and crack growth models are presented. This book is the result of a long period of close collaborationbetween its two authors who, although of di?erent backgrounds, mathematical and mechanical, both have a strong sense of engineering with respect to the fatigue problem. When the authors of this book ?rst approached the fatigue ?eld in 1982 (twenty six years ago), they found the following scenario: 1. Linear, bilinear or trilinear models were frequently proposed by relevant laboratoriesandacademiccenterstoreproducetheW] ohler?eld. Thiswas the case of well known institutions, which justi?ed these models based on clientrequirementsorpreferences. Thisledtotheinclusionofsuchmodels and methods as, for example, the up-and-down, in standards and o?cial practical directives (ASTM, Euronorm, etc.), which have proved to be unfortunate."
This practical reference provides in-depth information required to
understand and properly estimate compressor capabilities and to
select the proper designs. Engineers and students will gain a
thorough understanding of compression principles, equipment,
applications, selection, sizing, installation, and maintenance. The
many examples clearly illustrate key aspects to help readers
understand the "real world" of compressor technology.
This volume contains the Proceedings of MUSME 2014, held at Huatulco in Oaxaca, Mexico, October 2014. Topics include analysis and synthesis of mechanisms; dynamics of multibody systems; design algorithms for mechatronic systems; simulation procedures and results; prototypes and their performance; robots and micromachines; experimental validations; theory of mechatronic simulation; mechatronic systems; and control of mechatronic systems. The MUSME symposium on Multibody Systems and Mechatronics was held under the auspices of IFToMM, the International Federation for Promotion of Mechanism and Machine Science, and FeIbIM, the Iberoamerican Federation of Mechanical Engineering. Since the first symposium in 2002, MUSME events have been characterised by the way they stimulate the integration between the various mechatronics and multibody systems dynamics disciplines, present a forum for facilitating contacts among researchers and students mainly in South American countries, and serve as a joint conference for the IFToMM and FeIbIM communities.
This is a masterly exposition and an encyclopedic presentation of the theory of hyperbolic conservation laws. It illustrates the essential role of continuum thermodynamics in providing motivation and direction for the development of the mathematical theory while also serving as the principal source of applications. The reader is expected to have a certain mathematical sophistication and to be familiar with (at least) the rudiments of analysis and the qualitative theory of partial differential equations, whereas prior exposure to continuum physics is not required. The target group of readers would consist of (a) experts in the mathematical theory of hyperbolic systems of conservation laws who wish to learn about the connection with classical physics; (b) specialists in continuum mechanics who may need analytical tools; (c) experts in numerical analysis who wish to learn the underlying mathematical theory; and (d) analysts and graduate students who seek introduction to the theory of hyperbolic systems of conservation laws. This new edition places increased emphasis on hyperbolic systems of balance laws with dissipative source, modeling relaxation phenomena. It also presents an account of recent developments on the Euler equations of compressible gas dynamics. Furthermore, the presentation of a number of topics in the previous edition has been revised, expanded and brought up to date, and has been enriched with new applications to elasticity and differential geometry. The bibliography, also expanded and updated, now comprises close to two thousand titles. From the reviews of the 3rd edition: "This is the third edition of the famous book by C.M. Dafermos. His masterly written book is, surely, the most complete exposition in the subject." Evgeniy Panov, Zentralblatt MATH "A monumental book encompassing all aspects of the mathematical theory of hyperbolic conservation laws, widely recognized as the "Bible" on the subject." Philippe G. LeFloch, Math. Reviews
This edited volume presents research results of the PPP European Green Vehicle Initiative (EGVI), focusing on Electric Vehicle Systems Architecture and Standardization Needs. The objectives of energy efficiency and zero emissions in road transportation imply a paradigm shift in the concept of the automobile regarding design, materials, and propulsion technology. A redesign of the electric and electronic architecture provides in many aspects additional potential for reaching these goals. At the same time, standardization within a broad range of features, components and systems is a key enabling factor for a successful market entry of the electric vehicle (EV). It would lower production cost, increase interoperability and compatibilities, and sustain market penetration. Hence, novel architectures and testing concepts and standardization approaches for the EV have been the topic of an expert workshop of the European Green Vehicles Initiative PPP. This book contains the contributions of current European research projects on EV architecture and an expert view on the status of EV standardization. The target audience primarily comprises researchers and experts in the field.
In Logomotive Ian Logan's photographs are assembled into chapters and picture essays recalling the great days of lines such as the Santa Fe, the Union Pacific, and the Kansas City Southern. Some of his journeys are presented as travelogues in which he meets the Fat Controller, gets to sound the horn, and wanders into freight yards to see the last generation of streamline locomotives rusting amid the weeds. Animal motifs, Native American allusions, advertising slogans, names of famous trains such as the Super Chief and the Wabash Cannonball provide the subject matter for other picture features.
This fourth issue on "progress in turbulence" is based on the fourth ITI conference (ITI interdisciplinary turbulence initiative), which took place in Bertinoro, North Italy. Leading researchers from the engineering and physical sciences presented latest results in turbulence research. Basic as well as applied research is driven by the rather notorious difficult and essentially unsolved problem of turbulence. In this collection of contributions clear progress can be seen in different aspects, ranging from new quality of numerical simulations to new concepts of experimental investigations and new theoretical developments. The importance of turbulence is shown for a wide range of applications including: combustion, energy, flow control, urban flows, are few examples found in this volume. A motivation was to bring fundamentals of turbulence in connection with renewable energy. This lead us to add a special topic relevant to the impact of turbulence on the wind energy conversion. The structure of the present book is as such that contributions have been bundled according to covering topics i.e. I Basic Turbulence Aspects, II Particle Laden Flows, III Modeling and Simulations, IV, Experimental Methods, V Special Flows, VI Atmospheric Boundary Layer, VII Boundary Layer, VIII Wind Energy and IX Convection. This book is dedicated to the memory of Prof. Tim Nickels. Shortly after giving an invited lecture at the 4th ITI conference, the turbulence community lost a world-class scientist, a friend and devoted family man.
This book deals with the mechanics of solid bodies in contact, a subject intimately connected with such topics as fracture, hardness, and elasticity. Coverage begins with an introduction to the mechanical properties of materials, general fracture mechanics, and the fracture of brittle solids. It then provides a detailed description of indentation stress fields for both elastic and elastic-plastic contact. In addition, the book discusses the formation of Hertzian cone cracks in brittle materials, subsurface damage in ductile materials, and the meaning of hardness. Coverage concludes with an overview of practical methods of indentation testing.
This book comprises the proceedings of International Conference on Research and Innovations in Mechanical Engineering (ICRIME 2013) organized by Guru Nanak Dev Engineering College, Ludhiana with support from AICTE, TEQIP, DST and PTU, Jalandhar. This international conference served as a premier forum for communication of new advances and research results in the fields of mechanical engineering. The proceedings reflect the conference's emphasis on strong methodological approaches and focus on applications within the domain of mechanical engineering. The contents of this volume aim to highlight new theoretical and experimental findings in the fields of mechanical engineering and closely related fields, including interdisciplinary fields such as robotics and mechatronics.
Condition monitoring of machines in non-stationary operations (CMMNO) can be seen as the major challenge for research in the field of machinery diagnostics. Condition monitoring of machines in non-stationary operations is the title of the presented book and the title of the Conference held in Hammamet - Tunisia March 26 - 28, 2012. It is the second conference under this title, first took place in Wroclaw - Poland , March 2011. The subject CMMNO comes directly from industry needs and observation of real objects. Most monitored and diagnosed objects used in industry works in non-stationary operations condition. The non-stationary operations come from fulfillment of machinery tasks, for which they are designed for. All machinery used in different kind of mines, transport systems, vehicles like: cars, buses etc, helicopters, ships and battleships and so on work in non-stationary operations. The papers included in the book are shaped by the organizing board of the conference and authors of the papers. The papers are divided into five sections, namely: Condition monitoring of machines in non-stationary operationsModeling of dynamics and fault in systems Signal processing and Pattern recognition Monitoring and diagnostic systems Noise and vibration of machinesThe presented book gives the back ground to the main objective of the CMMNO 2012 conference that is to bring together scientific community to discuss the major advances in the field of machinery condition monitoring in non-stationary conditions.
Porous Semiconductors: Optical Properties and Applications provides an examination of porous semiconductor materials. Beginning with a description of the basic electrochemistry of porous semiconductors and the different kinds of porous semiconductor materials that can be fabricated, the book moves on to describe the fabrication processes used in the production of porous semiconductor optical components. Concluding the text, a number of optical components based on porous semiconductor materials are discussed in depth. Porous Semiconductors: Optical Properties and Applications provides a thorough grounding in the design, fabrication and theory behind the optical applications of porous semiconductor materials for graduate and undergraduate students interested in optics, photonics, MEMS, and material science. The book is also a valuable reference for scientists, researchers, and engineers in the field of optics and materials science. |
![]() ![]() You may like...
New all-in-one: Insects, weird and…
Mart Meij, Beatrix de Villiers
Paperback
Earthquake Source Asymmetry, Structural…
Roman Teisseyre, Minoru Takeo, …
Hardcover
R6,240
Discovery Miles 62 400
Volcanoes of the Azores - Revealing the…
Ulrich Kueppers, Christoph Beier
Hardcover
R3,634
Discovery Miles 36 340
|