![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
This book provides readers with a timely snapshot of the potential offered by and challenges posed by signal processing methods in the field of machine diagnostics and condition monitoring. It gathers contributions to the first Workshop on Signal Processing Applied to Rotating Machinery Diagnostics, held in Setif, Algeria, on April 9-10, 2017, and organized by the Applied Precision Mechanics Laboratory (LMPA) at the Institute of Precision Mechanics, University of Setif, Algeria and the Laboratory of Mechanics, Modeling and Manufacturing (LA2MP) at the National School of Engineers of Sfax. The respective chapters highlight research conducted by the two laboratories on the following main topics: noise and vibration in machines; condition monitoring in non-stationary operations; vibro-acoustic diagnosis of machinery; signal processing and pattern recognition methods; monitoring and diagnostic systems; and dynamic modeling and fault detection.
This book focuses on surface layers fracture of cyclical contacting bodies (machine parts). Calculation models and calculating procedures of stress-strain states of cyclically contacting solids with cracks, are included. Recommendations for the optimization of operating parameters of joints (contact stresses magnitude, friction/lubrication conditions, materials crack resistance etc) for elements of rolling pairs (wheel-rail systems, backup roll - working roll of rolling mills etc.) and some fretting pairs are formulated.
This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods' deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the construction material in force transmission and the stable equilibrium of the structure as a whole cannot be guaranteed based on these research results. Successfully addressing this important gap in the literature, the book is intended for researchers and postgraduates in engineering mechanics, civil engineering and related areas.
This monograph is centered on mathematical modeling, innovative numerical algorithms and adaptive concepts to deal with fracture phenomena in multiphysics. State-of-the-art phase-field fracture models are complemented with prototype explanations and rigorous numerical analysis. These developments are embedded into a carefully designed balance between scientific computing aspects and numerical modeling of nonstationary coupled variational inequality systems. Therein, a focus is on nonlinear solvers, goal-oriented error estimation, predictor-corrector adaptivity, and interface conditions. Engineering applications show the potential for tackling practical problems within the fields of solid mechanics, porous media, and fluidstructure interaction.
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.
This book investigates the performance limitation issues in networked feedback systems. The fact that networked feedback systems consist of control and communication devices and systems calls for the integration of control theory and information theory. The primary contributions of this book lie in two aspects: the newly-proposed information-theoretic measures and the newly-discovered control performance limitations. We first propose a number of information notions to facilitate the analysis. Using those notions, classes of performance limitations of networked feedback systems, as well as state estimation systems, are then investigated. In general, the book presents a unique, cohesive treatment of performance limitation issues of networked feedback systems via an information-theoretic approach. This book is believed to be the first to treat the aforementioned subjects systematically and in a unified manner, offering a unique perspective differing from existing books.
The integration of electronic engineering, mechanical engineering, control and computer engineering - Mechatronics - lies at the heart of the innumerable gadgets, processes and technology without which modern life would seem impossible. From auto-focus cameras to car engine management systems, and from state-of-the-art robots to the humble washing machine, Mechatronics has a hand in them all.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This fourth volume covers the following main topics: aero-engines; turbochargers; eolian (wind) generators; automotive rotating systems; and hydro power plants.
This unique volume imparts practical information on the operation, maintenance, and modernization of heavy performance machines such as lignite mine machines, bucket wheel excavators, and spreaders. Problems of large scale machines (mega machines) are highly specific and not well recognized in the common mechanical engineering environment. Prof. Rusinski and his co-authors identify solutions that increase the durability of these machines as well as discuss methods of failure analysis and technical condition assessment procedures. "Surface Mining Machines: Problems in Maintenance and Modernization" stands as a much-needed guidebook for engineers facing the particular challenges of heavy performance machines and offers a distinct and interesting demonstration of scale-up issues for researchers and scientists from across the fields of machine design and mechanical engineering.
This multi-contributed volume provides a practical, applications-focused introduction to nonlinear acoustical techniques for nondestructive evaluation. Compared to linear techniques, nonlinear acoustical/ultrasonic techniques are much more sensitive to micro-cracks and other types of small distributed damages. Most materials and structures exhibit nonlinear behavior due to the formation of dislocation and micro-cracks from fatigue or other types of repetitive loadings well before detectable macro-cracks are formed. Nondestructive evaluation (NDE) tools that have been developed based on nonlinear acoustical techniques are capable of providing early warnings about the possibility of structural failure before detectable macro-cracks are formed. This book presents the full range of nonlinear acoustical techniques used today for NDE. The expert chapters cover both theoretical and experimental aspects, but always with an eye towards applications. Unlike other titles currently available, which treat nonlinearity as a physics problem and focus on different analytical derivations, the present volume emphasizes NDE applications over detailed analytical derivations. The introductory chapter presents the fundamentals in a manner accessible to anyone with an undergraduate degree in Engineering or Physics and equips the reader with all of the necessary background to understand the remaining chapters. This self-contained volume will be a valuable reference to graduate students through practising researchers in Engineering, Materials Science, and Physics. Represents the first book on nonlinear acoustical techniques for NDE applications Emphasizes applications of nonlinear acoustical techniques Presents the fundamental physics and mathematics behind nonlinear acoustical phenomenon in a simple, easily understood manner Covers a variety of popular NDE techniques based on nonlinear acoustics in a single volume
Here's the first non-technical introduction to the exciting field of microelectromechanical systems (MEMS). It describes in detail the materials used in producing MEMS -- including silicon, polymers and glass and quartz substrates -- as well as MEMS design for nozzles, sensors, valves and other applications. It examines the manufacture of commercial MEMS using techniques such as oxidation, lithography, chemical vapor deposition and silicon fusion bonding and applications in a wide range of industries including data storage, telecommunications, consumer, automotive, medical and defense. A unique element of this book is its look at the future of MEMS -- its potential for microelectrode arrays, actuators and optical switches and other technologies.
This book presents selected extended papers from The First International Conference on Mechanical Engineering (INCOM2018), realized at the Jadavpur University, Kolkata, India. The papers focus on diverse areas of mechanical engineering and some innovative trends in mechanical engineering design, industrial practices and mechanical engineering education. Original, significant and visionary papers were selected for this edition, specially on interdisciplinary and emerging areas. All papers were peer-reviewed.
This book is intended to serve as a compendium on the state-of-the-art research in the field of locomotives and rail road transport. The book includes chapters on different aspects of the subject from renowned international experts in the field. The book looks closely at diesel engine locomotives and examines performance, emissions, and environmental impact. The core topics have been categorised into four groups: general topics, efficiency improvement and noise reduction, alternate fuels for locomotive traction, and locomotive emission reduction and measurement. The book offers an excellent, cutting-edge resource for researchers working in this area. The book will also be of use to professionals and policymakers interested in locomotive engine technologies and emission standards.
This book represents a collection of papers presented at the 2nd World Congress on Integrated Computational Materials Engineering (ICME), a specialty conference organized by The Minerals, Metals & Materials Society (TMS).
This book gives an overview of the existing self-healing nanotextured vascular approaches. It describes the healing agents used in engineering self-healing materials as well as the fundamental physicochemical phenomena accompanying self-healing. This book also addresses the different fabrication methods used to form core-shell nanofiber mats. The fundamental theoretical aspects of fracture mechanics are outlined. A brief theoretical description of cracks in brittle elastic materials is given and the Griffith approach is introduced. The fracture toughness is described, including viscoelastic effects. Critical (catastrophic) and subcritical (fatigue) cracks and their growth are also described theoretically. The adhesion and cohesion energies are introduced as well, and the theory of the blister test for the two limiting cases of stiff and soft materials is developed. In addition, the effect of non-self-healing nanofiber mats on the toughening of ply surfaces in composites is discussed. The book also presents a brief description of the electrochemical theory of corrosion crack growth. All the above-mentioned phenomena are relevant in the context of self-healing materials.
This book presents a comprehensive mathematical approach for solving stochastic magnetic field problems. It discusses variability in material properties and geometry, with an emphasis on the preservation of structural physical and mathematical properties. It especially addresses uncertainties in the computer simulation of magnetic fields originating from the manufacturing process. Uncertainties are quantified by approximating a stochastic reformulation of the governing partial differential equation, demonstrating how statistics of physical quantities of interest, such as Fourier harmonics in accelerator magnets, can be used to achieve robust designs. The book covers a number of key methods and results such as: a stochastic model of the geometry and material properties of magnetic devices based on measurement data; a detailed description of numerical algorithms based on sensitivities or on a higher-order collocation; an analysis of convergence and efficiency; and the application of the developed model and algorithms to uncertainty quantification in the complex magnet systems used in particle accelerators.
Biomechanical engineering is involved with creating and producing a variety of products in everyday use, from environmentally safe plastics to various foods, fabrics, and medicines. A combination of engineering and biology, it is a fast-growing field with many new and exciting opportunities in genetic engineering and biotechnology. However, research surrounding biomechanical applications is scattered and often restricted, leading to the need for a comprehensive publication of the recent advances and developments in this emerging field. Design, Development, and Optimization of Bio-Mechatronic Engineering Products provides pivotal research on the application of combining mechanical engineering with human biological systems in order to develop bio-mechatronic products like pacemakers, artificial kidney replacements, artificial hearts, and new joints or limbs to better and more accurately monitor and advance human health. While highlighting topics such as orthotic devices, inter-electrode gap, and biomaterial applications, this publication explores producing artificial material to work in sync with the human body. This book is ideally designed for engineers, health professionals, technology developers, researchers, academicians, and students.
IFToMM conferences have a history of success due to the various advances achieved in the field of rotor dynamics over the past three decades. These meetings have since become a leading global event, bringing together specialists from industry and academia to promote the exchange of knowledge, ideas, and information on the latest developments in the dynamics of rotating machinery. The scope of the conference is broad, including e.g. active components and vibration control, balancing, bearings, condition monitoring, dynamic analysis and stability, wind turbines and generators, electromechanical interactions in rotor dynamics and turbochargers. The proceedings are divided into four volumes. This third volume covers the following main topics: dynamic analysis and stability; electromechanical interactions in rotordynamics; nonlinear phenomena in rotordynamics; rotordynamics of micro, nano and cryogenic machines; and fluid structure interactions in rotordynamics. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,342
Discovery Miles 43 420
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|