Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Exploring random maintenance models, this book provides an introduction to the implementation of random maintenance, and it is one of the first books to be written on this subject. It aims to help readers learn new techniques for applying random policies to actual reliability models, and it provides new theoretical analyses of various models including classical replacement, preventive maintenance and inspection policies. These policies are applied to scheduling problems, backup policies of database systems, maintenance policies of cumulative damage models, and reliability of random redundant systems. Reliability theory is a major concern for engineers and managers, and in light of Japan's recent earthquake, the reliability of large-scale systems has increased in importance. This also highlights the need for a new notion of maintenance and reliability theory, and how this can practically be applied to systems. Providing an essential guide for engineers and managers specializing in reliability maintenance and quality control, this book provides a useful resource for those with doubts carrying out maintenance of new and large systems. It is also intended for graduate students and researchers interested in operations research, statistics, industrial engineering and management science.
Servo Motors and Industrial Control Theory is the only text focused on the fundamentals of servo motors and control theory. Graphical methods for classical control theory have been augmented with worked examples using MatLab and Mathcad to reflect the reality of the way engineers solve control problems in the field today. State variable feedback control theory is introduced clearly and simply, with practical examples that help students approach what can be seen as complicated problems with confidence. This updated second edition includes expanded discussion of Nyquist and Root Locus stability criteria and the role of sensors, as well as new Mathcad examples. A range of parameters are introduced for each servo control system discussed, making this book a comprehensive learning tool for students and an accessible information resource for control system designers who want to keep their knowledge up-to-date. The author encourages readers with any inquiries regarding the book to contact him at [email protected].
Mechanical Vibrations: Theory and Applications presents the basic principles of engineering vibrations and introduces students to a strategic framework to advance their knowledge and skill in engineering problem-solving. The opening chapter reviews key topics, including mathematical modeling, dimensional analysis, dynamics, and more. Chapter 2 focuses on the elements that comprise mechanical systems and the methods of mathematical modeling of mechanical systems. Two methods for the derivation of differential equations for a linear system are presented: the free-body diagram method and the energy method. Chapters 3 through 5 focus on single degree-of-freedom (SDOF) systems. Chapter 3 concentrates on free vibration of SDOF systems. Forced vibration of SDOF systems is covered in Chapter 4 (harmonic excitation) and Chapter 5 (general transient excitation). Chapter 6 is focused on free and forced vibration of two degree-of-freedom systems. Chapters 7 through 9 cover general multiple degree-of-freedom (MDOF) systems. Chapter 7 concentrates on the derivation of differential equations governing MDOF systems. Chapter 8 concentrates on free vibration, whereas Chapter 9 covers forced vibration. The final chapter provides a brief overview of vibrations of continuous systems. Mechanical Vibrations: Theory and Applications is designed to serve as a primary textbook for advanced undergraduate courses on vibrations. Chapters 7 through 10 are appropriate for use as a standalone resource for graduate-level courses.
The fascinating rainbow colors we see in soap film not only delight us; they also help us understand the physical essence of nature. In this dissertation, the author presents his studies on the interactions between flexible bodies and ambient fluids, a topic reflected in nature, in everyday life and in various industrial applications. By investigating this topic, he reveals the mechanism of flow-induced vibration of flexible bodies, the process of energy exchange between flexible bodies and fluids and the way flexible bodies interact with each other in flowing fluids. These studies not only allow us to understand nature better, but can also help us invent new machines and improve existing devices to glean more energy from nature.
This book presents fractography and failure analysis at a level that is accessible for non-expert readers, without losing scientific rigor. It offers a comprehensive description of fracture surfaces in engineering materials, with an emphasis on metals, and of the methodology for the observation of fracture surfaces. It also discusses in detail the main fracture mechanisms and their corresponding fracture surfaces, including brittle, ductile, fatigue, and environmental fractures. The last chapter is dedicated to the use of fractography in determining of the causes component failure. In modern engineering, the analysis of fractured components is a common practice in many fields, such as integrity management systems, materials science research, and failure investigations. As such this book is useful for engineers, scientists, engineering students, loss adjuster surveyors and any professional dealing with fractured components.
The four year undergraduate course in Engineering is loaded with theoretical contents and the students hardly find enough time and opportunity to adequately grasp the physical and practical aspects of application of various engineering theories that are being taught. Therefore, certain practice-oriented knowledge inputs in these years may help them acquire and enhance proficiency in the industrial working systems and processes. This book attempts to provide certain practice-oriented knowledge inputs which may help young mechanical engineers who aspire to make a successful career in engineering goods manufacturing enterprises. The book seeks to provide a combination of Engineering and Production/Manufacturing Management aspects to enable young mechanical engineers to make a confident start at the workplace and eventually ascend to leading positions in the organization. Print edition not for sale in South Asia (India, Sri Lanka, Nepal, Bangladesh, Pakistan and Bhutan)
The internal combustion is widely used as a power source in
engineering. As the demands placed upon engines have increased,
tribology has come to play an increasingly important role in their
development.
This book opens with an explanation of the vibrations of a single degree-of-freedom (dof) system for all beginners. Subsequently, vibration analysis of multi-dof systems is explained by modal analysis. Mode synthesis modeling is then introduced for system reduction, which aids understanding in a simplified manner of how complicated rotors behave. Rotor balancing techniques are offered for rigid and flexible rotors through several examples. Consideration of gyroscopic influences on the rotordynamics is then provided and vibration evaluation of a rotor-bearing system is emphasized in terms of forward and backward whirl rotor motions through eigenvalue (natural frequency and damping ratio) analysis. In addition to these rotordynamics concerning rotating shaft vibration measured in a stationary reference frame, blade vibrations are analyzed with Coriolis forces expressed in a rotating reference frame. Other phenomena that may be assessed in stationary and rotating reference frames include stability characteristics due to rotor internal damping and instabilities due to asymmetric shaft stiffness and thermal unbalance behavior.
This book reviews the current understanding of the mechanical, chemical and biological processes that are responsible for the degradation of a variety of implant materials. All 18 chapters will be written by internationally renowned experts to address both fundamental and practical aspects of research into the field. Different failure mechanisms such as corrosion, fatigue, and wear will be reviewed, together with experimental techniques for monitoring them, either in vitro or in vivo. Procedures for implant retrieval and analysis will be presented. A variety of biomaterials (stainless steels, titanium and its alloys, nitinol, magnesium alloys, polyethylene, biodegradable polymers, silicone gel, hydrogels, calcium phosphates) and medical devices (orthopedic and dental implants, stents, heart valves, breast implants) will be analyzed in detail. The book will serve as a broad reference source for graduate students and researchers studying biomedicine, corrosion, surface science, and electrochemistry.
This monograph is a first-of-its-kind compilation on high deposition pulse current GMAW process. The nine chapters of this monograph may serve as a comprehensive knowledge tool to use advanced welding engineering in prospective applications. The contents of this book will prove useful to the shop floor welding engineer in handling this otherwise critical welding process with confidence. It will also serve to inspire researchers to think critically on more versatile applications of the unique nature of pulse current in GMAW process to develop cutting edge welding technology.
This book presents a hybrid approach to the mechanics of thin
bodies. Classical theories of rods, plates and shells with
constrained shear are based on asymptotic splitting of the
equations and boundary conditions of three-dimensional elasticity.
The asymptotic solutions become accurate as the thickness
decreases, and the three-dimensional fields of stresses and
displacements can be determined. The analysis includes practically
important effects of electromechanical coupling and material
inhomogeneity. The extension to the geometrically nonlinear range
uses the direct approach based on the principle of virtual work.
Vibrations and buckling of pre-stressed structures are studied with
the help of linearized incremental formulations, and direct tensor
calculus rounds out the list of analytical techniques used
throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book.
This book describes new methods developed for modelling dynamics of machines commonly used in the offshore industry. These methods are based both on the rigid finite element method, used for the description of link deformations, and on homogeneous transformations and joint coordinates, which is applied to the modelling of multibody system dynamics. In this monograph, the bases of the rigid finite element method and homogeneous transformations are introduced. Selected models for modelling dynamics of offshore devices are then verified both by using commercial software, based on the finite element method, as well as by using additional methods. Examples of mathematical models of offshore machines, such as a gantry crane for Blowout-Preventer (BOP) valve block transportation, a pedestal crane with shock absorber, and pipe laying machinery are presented. Selected problems of control in offshore machinery as well as dynamic optimization in device control are also discussed. Additionally, numerical simulations of pipe-laying operations taking active reel drive into account are shown.
This book covers the essential topics for a second-level course in strength of materials or mechanics of materials, with an emphasis on techniques that are useful for mechanical design. Design typically involves an initial conceptual stage during which many options are considered. At this stage, quick approximate analytical methods are crucial in determining which of the initial proposals are feasible. The ideal would be to get within 30% with a few lines of calculation. The designer also needs to develop experience as to the kinds of features in the geometry or the loading that are most likely to lead to critical conditions. With this in mind, the author tries wherever possible to give a physical and even an intuitive interpretation to the problems under investigation. For example, students are encouraged to estimate the location of weak and strong bending axes and the resulting neutral axis of bending before performing calculations, and the author discusses ways of getting good accuracy with a simple one degree of freedom Rayleigh-Ritz approximation. Students are also encouraged to develop a feeling for structural deformation by performing simple experiments in their outside environment, such as estimating the radius to which an initially straight bar can be bent without producing permanent deformation, or convincing themselves of the dramatic difference between torsional and bending stiffness for a thin-walled open beam section by trying to bend and then twist a structural steel beam by hand-applied loads at one end. In choosing dimensions for mechanical components, designers will expect to be guided by criteria of minimum weight, which with elementary calculations, generally leads to a thin-walled structure as an optimal solution. This consideration motivates the emphasis on thin-walled structures, but also demands that students be introduced to the limits imposed by structural instability. Emphasis is also placed on the effect of manufacturing errors on such highly-designed structures - for example, the effect of load misalignment on a beam with a large ratio between principal stiffness and the large magnification of initial alignment or loading errors in a strut below, but not too far below the buckling load. Additional material can be found on http:
//extras.springer.com/.
The book is targeted at engineers, university lecturers, postgraduates, and final year undergraduate students involved in computational modelling and experimental and theoretical analysis of the high-temperature behavior of engineering structures. It will also be of interest to researchers developing the thermal strength theory as a branch of continuum mechanics. Thermal integrity is a multidisciplinary field combining the expertise of mechanical engineers, material scientists and applied mathematicians, each approaching the problem from their specific viewpoint. This monograph draws on the research of a broad scientific community including the author's contribution. The scope of thermal strength analysis was considerably extended thanks to modern computers and the implementation of FEM codes. However, the author believes that some material models adopted in the advanced high-performance software, are not sufficiently justificated due to lack of easy-to-follow books on the theoretical and experimental aspects of thermal integrity. The author endeavors to provide a thorough yet sufficiently simple presentation of the underlying concepts, making the book compelling to a wide audience.
The Nirma University International Conference on Engineering NUiCONE is a flagship event of the Institute of Technology, Nirma University, Ahmedabad. NUiCONE-2015 is focussed on events/themes in the current trends in Engineering and its research issues. Practicing engineers, technologists and technopreneurs from the industry will engage in special knowledge sharing sessions using applied technical papers by industry participants on case-study applications, white-papers, panel discussions, industrial exhibitions of innovations and technology products etc. This proceedings book includes peer reviewed and presented research papers by research scholars and professionals from academia, industry and government R&D organizations. The papers included in this proceedings volume present unpublished research of participating researchers related to some specific multi-disciplinary themes addressing sustainable engineering fields like Sustainable Manufacturing Processes; Design and Analysis of Machine & Mechanisms; Energy Conservation and Management; Concrete and Structural Engineering; Infrastructure Project Planning and Management; Chemical Process Development and Design; and Technologies for Green Environment.
Control Methodology: Robust Exponential Convergence with Bounded Controllers (M. Corless, G. Leitmann). Second Variation Conditions for the Optimal Control Problem with Normalized Final Time (D.G. Hull, C.N. D'Souza). A New Tool for Robust Control (A.G. Soldatos et al.). Applications to Aerospace Systems: PersuitEvasion Differential Games Applied to a 3Dimensional Missle Guidance Problem Using the Liapunov Approach (N.J.C. Greenwood). Periodic Optimal Endurance Cruise with Variable Camber Control (G. Sachs, R. Mehlhorn). Control of Mechanical Systems: Sequential Design of a Linear Quadratic Controller for the Deep Space Network Antennas (W. Gawronski). Maneuvering and Control of Space Structures (L.M. Meirovitch). Computational Techniques: Jacobian Motion (W. Stadler). Neural Modeling and Identification of Nonlinear Systems in an Abstract Space Setting (R.J.P. de Figueiredo). 15 additional articles. Index.
The book covers the state-of-the-art treatment in modelling and experimental investigation of the mechanical behaviour of cellular and porous materials. Starting from the continuum mechanical modelling, to the numerical simulation, several important questions related to applications such as the fracture and impact behaviour are covered.
"Proceedings of the 8th International Symposium on Heating,
Ventilation and Air Conditioning" is based on the 8th International
Symposium of the same name (ISHVAC2013), which took place in Xi an
on October 19-21, 2013. The conference series was initiated at
Tsinghua University in 1991 and has since become the premier
international HVAC conference initiated in China, playing a
significant part in the development of HVAC and indoor
environmental research and industry around the world. This
international conference provided an exclusive opportunity for
policy-makers, designers, researchers, engineers and managers to
share their experience. Considering the recent attention on
building energy consumption and indoor environments, ISHVAC2013
provided a global platform for discussing recent research on and
developments in different aspects of HVAC systems and components,
with a focus on building energy consumption, energy efficiency and
indoor environments. These categories span a broad range of topics,
and the proceedings provide readers with a good general overview of
recent advances in different aspects of HVAC systems and related
research. As such, they offer a unique resource for further
research and a valuable source of information for those interested
in the subject. |
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
|