![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure explores the thermodynamics of non-equilibrium processes in materials. The book develops a general technique created in order to construct nonlinear evolution equations describing non-equilibrium processes, while also developing a geometric context for non-equilibrium thermodynamics. Solid materials are the main focus in this volume, but the construction is shown to also apply to fluids. This volume also: * Explains the theory behind thermodynamically-consistent construction of non-linear evolution equations for non-equilibrium processes * Provides a geometric setting for non-equilibrium thermodynamics through several standard models, which are defined as maximum dissipation processes * Emphasizes applications to the time-dependent modeling of soft biological tissue Maximum Dissipation: Non-Equilibrium Thermodynamics and its Geometric Structure will be valuable for researchers, engineers and graduate students in non-equilibrium thermodynamics and the mathematical modeling of material behavior.
Frontiers in Civil and Hydraulic Engineering focuses on the research of architecture and hydraulic engineering in civil engineering. The proceedings feature the most cutting-edge research directions and achievements related to civil and hydraulic engineering. Subjects in the proceedings including: * Engineering Structure * Intelligent Building * Structural Seismic Resistance * Monitoring and Testing * Hydraulic Engineering * Engineering Facility The works of this proceedings can promote development of civil and hydraulic engineering, resource sharing, flexibility and high efficiency. Thereby, promote scientific information interchange between scholars from the top universities, research centers and high-tech enterprises working all around the world.
The second edition of this textbook includes a refined presentation of concepts in each chapter, additional examples; new problems and sections, such as conformal mapping and mechanical behavior of wood; while retaining all the features of the original book. The material included in this book is based upon the development of analytical and numerical procedures pertinent to particular fields of linear elastic fracture mechanics (LEFM) and plastic fracture mechanics (PFM), including mixed-mode-loading interaction. The mathematical approach undertaken herein is coupled with a brief review of several fracture theories available in cited references, along with many color images and figures. Dynamic fracture mechanics is included through the field of fatigue and Charpy impact testing.
This book focuses on surface layers fracture of cyclical contacting bodies (machine parts). Calculation models and calculating procedures of stress-strain states of cyclically contacting solids with cracks, are included. Recommendations for the optimization of operating parameters of joints (contact stresses magnitude, friction/lubrication conditions, materials crack resistance etc) for elements of rolling pairs (wheel-rail systems, backup roll - working roll of rolling mills etc.) and some fretting pairs are formulated.
The book summarizes the results of the European research project "Intelligent fixtures for the manufacturing of low rigidity components" (INTEFIX). The structure of the book follows the sub-projects which are dedicated to case studies within the scenarios "vibrations", "deformations" and "positioning". The INTEFIX project deals with the development and analysis of several exemplary types of intelligent, sensor and actuator integrated fixtures for the clamping of sensitive workpieces in cutting machine tools. Thus, the book gives a representative overview about this innovative field of technology. The demands of the case studies are described and the technological approaches and solutions are introduced. Furthermore, innovative methods for the design and optimization of intelligent fixtures are presented.
Active Disturbance Rejection Control of Dynamic Systems: A Flatness Based Approach describes the linear control of uncertain nonlinear systems. The net result is a practical controller design that is simple and surprisingly robust, one that also guarantees convergence to small neighborhoods of desired equilibria or tracking errors that are as close to zero as desired. This methodology differs from current robust feedback controllers characterized by either complex matrix manipulations, complex parameter adaptation schemes and, in other cases, induced high frequency noises through the classical chattering phenomenon. The approach contains many of the cornerstones, or philosophical features, of Model Free Control and ADRC, while exploiting flatness and GPI control in an efficient manner for linear, nonlinear, mono-variable and multivariable systems, including those exhibiting inputs delays. The book contains successful experimental laboratory case studies of diverse engineering problems, especially those relating to mechanical, electro-mechanical, robotics, mobile robotics and power electronics systems.
This unique and comprehensive text considers all aspects of heat exchanger fouling from the basic science of how surfaces become fouled to very practical ways of mitigating the problem and from mathematical modelling of different fouling mechanisms to practical methods of heat exchanger cleaning. The problems that restrict the efficient operation of equipment are described and the costs, some of them hidden costs, that are associated with the fouling of heat exchangers are discussed. Some simple concepts and models of the fouling processes are presented as part of the introduction to the subject. Advice on the selection, design, installation and commissioning of heat exchangers to minimise fouling is given. A large part of the text is devoted to the use of chemical and other additives to reduce or eliminate the problem of fouling. Another large section is designed to give information on both on-line and off-line cleaning of heat exchangers. One of the difficulties faced by designers and operators of heat exchangers is anticipating the likely extent of fouling problems to be encountered with different flow streams. Another large section addresses the question and describes methods that have been used in attempting to define fouling potential. The book concludes with a chapter on how fouling information can be obtained using plant data, field tests and laboratory studies.
The papers in this volume cover a broad spectrum of topics that represent the truly diverse nature of the field of composite materials. This collection presents research and findings relevant to the latest advances in composites materials, specifically their use in aerospace, maritime, and even land applications. The editors have made every effort to bring together authors who put forth recent advances in their research while concurrently both elaborating on and thereby enhancing our prevailing understanding of the salient aspects related to the science, engineering, and far-reaching technological applications of composite materials.
This book will be of vital interest to all engineers and designers concerned with centrifugal pumps and turbines. Including statistical information derived from 20000 pumps and 700 turbines with capacities of 5gpm to 5000000gpm, this book offers the widest range and scope of information currently available. Statistical analyses suggest practical methods of increasing pump performance and provide valuable data for new design aspects.
This book conveys the theoretical and experimental basics of a well-founded measurement technique in the areas of high DC, AC and surge voltages as well as the corresponding high currents. Additional chapters explain the acquisition of partial discharges and the electrical measured variables. Equipment exposed to very high voltages and currents is used for the transmission and distribution of electrical energy. They are therefore tested for reliability before commissioning using standardized and future test and measurement procedures. Therefore, the book also covers procedures for calibrating measurement systems and determining measurement uncertainties, and the current state of measurement technology with electro-optical and magneto-optical sensors is discussed.
This book presents essential methods of deformation compatibility control, and explicitly addresses the implied conditions on the methods' deformation compatibility. Consequently, these conditions can be considered in engineering structure design, while the conditions on stable equilibrium can be taken into account in the design method. Thus, the designed deformation and the actual deformation of the respective structure are approximately identical, guaranteeing both the flexibility of the construction material in force transmission and the equilibrium of force in the structure. Though equilibrium theory in engineering structures has been extensively studied, there has been comparatively little research on compatibility. In the limited researches available, the topics are primarily the theories and assumptions on the deformation compatibility, while few systematic works focus on the mechanical theoretical principles and methods of deformation compatibility control. As such, the flexibility of the construction material in force transmission and the stable equilibrium of the structure as a whole cannot be guaranteed based on these research results. Successfully addressing this important gap in the literature, the book is intended for researchers and postgraduates in engineering mechanics, civil engineering and related areas.
The book presents eight well-known and often used algorithms besides nine newly developed algorithms by the first author and his students in a practical implementation framework. Matlab codes and some benchmark structural optimization problems are provided. The aim is to provide an efficient context for experienced researchers or readers not familiar with theory, applications and computational developments of the considered metaheuristics. The information will also be of interest to readers interested in application of metaheuristics for hard optimization, comparing conceptually different metaheuristics and designing new metaheuristics.
This book is intended to serve as a compendium on the state-of-the-art research in the field of locomotives and rail road transport. The book includes chapters on different aspects of the subject from renowned international experts in the field. The book looks closely at diesel engine locomotives and examines performance, emissions, and environmental impact. The core topics have been categorised into four groups: general topics, efficiency improvement and noise reduction, alternate fuels for locomotive traction, and locomotive emission reduction and measurement. The book offers an excellent, cutting-edge resource for researchers working in this area. The book will also be of use to professionals and policymakers interested in locomotive engine technologies and emission standards.
This book analyzes several compliant contact force models within the context of multibody dynamics, while also revisiting the main issues associated with fundamental contact mechanics. In particular, it presents various contact force models, from linear to nonlinear, from purely elastic to dissipative, and describes their parameters. Addressing the different numerical methods and algorithms for contact problems in multibody systems, the book describes the gross motion of multibody systems by using a two-dimensional formulation based on the absolute coordinates and employs different contact models to represent contact-impact events. Results for selected planar multibody mechanical systems are presented and utilized to discuss the main assumptions and procedures adopted throughout this work. The material provided here indicates that the prediction of the dynamic behavior of mechanical systems involving contact-impact strongly depends on the choice of contact force model. In short, the book provides a comprehensive resource for the multibody dynamics community and beyond on modeling contact forces and the dynamics of mechanical systems undergoing contact-impact events.
|
You may like...
Mechanics Of Materials - SI Edition
Barry Goodno, James Gere
Paperback
Innovative Food Processing Technologies…
Kasiviswanathan Muthukumarappan, Kai Knoerzer
Hardcover
R38,876
Discovery Miles 388 760
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Orbital Mechanics and Formation Flying…
Pedro A. Capo-Lugo, P.M. Bainum
Hardcover
R4,342
Discovery Miles 43 420
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
|