Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
This book presents the basics and methods of nanoscale analytical techniques for tribology field. It gives guidance to the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. It provides an overview of the of state-of-the-art for researchers and practitioners in the field of tribology. It shows different examples to the application of mechanical, microstructural, chemical characterization methods and topography analysis of materials. Friction and Wear phenomena are governed by complexe processes at the interface of sliding surfaces. For a detailed understanding of these phenomena many surface sensitive techniques have become available in recent years. The applied methods are atom probe tomography, in situ TEM, SERS, NEXAFS, in situ XPS, nanoindentation and in situ Raman spectroscopy. A survey of new related numerical calculations completes this book. This concerns ab-initio coupling, numerical calculations for mechanical aspects and density functional theory (DFT) to study chemical reactivity.
This book introduces readers to gas flows and heat transfer in pebble bed reactor cores. It addresses fundamental issues regarding experimental and modeling methods for complex multiphase systems, as well as relevant applications and recent research advances. The numerical methods and experimental measurements/techniques used to solve pebble flows, as well as the content on radiation modeling for high-temperature pebble beds, will be of particular interest. This book is intended for a broad readership, including researchers and practitioners, and is sure to become a key reference resource for students and professionals alike.
KEY FEATURES:
This book focuses on theoretical aspects of dynamical systems in the broadest sense. It highlights novel and relevant results on mathematical and numerical problems that can be found in the fields of applied mathematics, physics, mechanics, engineering and the life sciences. The book consists of contributed research chapters addressing a diverse range of problems. The issues discussed include (among others): numerical-analytical algorithms for nonlinear optimal control problems on a large time interval; gravity waves in a reservoir with an uneven bottom; value distribution and growth of solutions for certain Painleve equations; optimal control of hybrid systems with sliding modes; a mathematical model of the two types of atrioventricular nodal reentrant tachycardia; non-conservative instability of cantilevered nanotubes using the Cell Discretization Method; dynamic analysis of a compliant tensegrity structure for use in a gripper application; and Jeffcott rotor bifurcation behavior using various models of hydrodynamic bearings.
This book comprises selected papers from the Fourth International Conference on Materials and Manufacturing Engineering (ICMME 2019). The contents focus on the latest developments in the synthesis and characterization of new materials, and highlights the challenges involved in the manufacturing and machinability of different materials. Advanced and cost-effective manufacturing processes and their applications are also discussed in the book. In addition, it covers topics like robotics, fluid dynamics, design and development, and different optimization techniques. The contents of this book will be beneficial to students, researchers, and industry professionals.
Written by a team of experts, Advances in Flowmeter Technology surveys the full range of modern flowmeters for product managers, strategic planners, engineers, distributors, and students. The origins, principles of operation,controls and instrumentation, and the relative advantages of each major flowmeter type are thoroughly explained. Extensive coverage of new types that employ cutting-edge technologies - such as coriolis, magnetic, ultrasonic, vortex, thermal flowmeters - is provided. The text includes comparative examples, placing these new types of meters in the context of more traditional ones, such as differential pressure, turbine, and positive displacement flowmeters.
This book comprises state-of-the-art advances in energy, combustion, power, propulsion, environment, focusing on the production and utilization of fossil fuels, alternative fuels and biofuels. It is written by internationally renowned experts who provide the latest fundamental and applied research innovations on cleaner energy production as well as utilization for a wide range of devices extending from micro scale energy conversion to hypersonic propulsion using hydrocarbon fuels. The tailored technical tracks and contributions are portrayed in the respective field to highlight different but complementary views on fuels, combustion, power and propulsion and air toxins with special focus on current and future R&D needs and activities. This book will serve as a useful reference for practicing engineers, research engineers and managers in industry and research labs, academic institutions, graduate students, and final year undergraduate students in mechanical, chemical, aerospace, energy, and environmental engineering.
The book investigates fundamental issues in flexible manipulator systems, including distributed parameter modeling and boundary controller design. It presents theoretical explorations of several fundamental problems concerning the dynamics and control of these systems. By integrating fresh concepts and results to form a systematic approach to control, it also provides a basic theoretical framework. In turn, the book offers a comprehensive treatment of flexible manipulator systems, addressing topics ranging from related distributed parameter modeling and advanced boundary controller design for these systems with input constraint, to active control with output constraint. In brief, the book addresses dynamical analysis and control design for flexible manipulator systems. Though primarily intended for researchers and engineers in the control system and mechanical engineering community, it can also serve as supplemental reading on the modeling and control of flexible manipulator systems at the postgraduate level.
This book provides a concise introduction to the physical foundations of the electro-discharge technology and applies it to the drilling of wells, the demolition of reinforced concrete objects, and the cutting of cracks in rocks and concrete. The electro-physical basis of this technology and the technical implementation of using spark discharge as a "working tool" in the above-mentioned contexts are also briefly considered. The book is intended for all scientists and experts working in the field of resource exploration and extraction, those engaged in building new objects, and in reconstructing or demolishing old ones. It can also be used as a textbook by students and postgraduates, deepening their knowledge of these innovative technologies.
T Level Engineering is written to cover the core elements of the new T Level Engineering qualifications. It provides essential information for T Level Engineering students and teachers, and will be useful as the student moves into higher education or an apprenticeship. The new T Level qualifications offer a realistic option to A Level and other vocational options. After completing a T Level in Engineering the student has a number of options including university courses and higher level apprenticeships. This book is written in an accessible fashion, no previous knowledge of engineering or technology is required, as all the technical terms are readily explained and a detailed glossary and list of abbreviations are included. Whether you are a student, tutor, or work placement manager you will surely find this book an enjoyable read and a handy reference book on your shelf. Andrew Livesey, MA, CEng is an experienced lecturer in engineering at Ashford College, Kent. He was a member of the DfE committee responsible for developing the T Levels and is a T Level Ambassador. His Routledge publications include: Basic Motorsport Engineering (2011), Advanced Motorsport Engineering (2012), The Repair of Vehicle Bodies (2018), Practical Motorsport Engineering (2018), Bicycle Engineering and Technology (2021) and Motorcycle Engineering (2021).
This book gathers selected papers presented at the 1st International Conference on Industrial Applications of Adhesives 2020 (IAA 2020). It covers a wide range of topics, including adhesive curing for electronic and automotive industries; adhesive testing with a torsion machine for rigorous mechanical properties determination; joint design using innovative techniques such as the meshless method; design methodologies in the automotive industry for joints under impact; temperature effects in joints typically found in civil engineering; and advanced nondestructive techniques such as terahertz spectroscopy to assess the durability of adhesive joints. Providing a review of the state-of the art in industrial applications of adhesives, the book serves as a valuable reference resource for researchers and graduate students interested in adhesive bonding.
This book presents central problems in the design, research and maintenance of large-size mining machines for open pits, mobile earth-moving machinery, hydraulic hammers for mining and civil engineering, and screening processes for bulk materials. It brings together the insights of numerous respected academics to offer a thorough and multifaceted overview of the topic. The first few chapters of the book deal with specific problems that frequently occur in machinery for open-pit mining. They focus on the resilience of large-size mining machines, degradation of steels used for supporting structures, and modelling of large-size rotary joints, as well as the noise hazards in connection with degradation processes. The book then moves on to discuss problems arising in earth-moving machinery, such as new approaches to the assessment of operation and maintenance, dynamic loads in front-end loader booms, and synchronic transfer of power from the engine to the driven wheels. The book concludes by discussing hydraulic hammers for mining and civil engineering, and screening processes for bulk materials that combine a vibroscreen with additional feed elements. The book is primarily intended for undergraduate and graduate mechanical engineering courses, but will also be of interest to researchers and mechanical engineers.
Cryogenic Technology and Applications describes the need for
smaller cryo-coolers as a result of the advances in the
miniaturization of electrical and optical devices and the need for
cooling and conducting efficiency. Cryogenic technology deals with
materials at low temperatures and the physics of their behavior at
these temps. The book demonstrates the ongoing new applications
being discovered for cryo-cooled electrical and optical sensors and
devices, with particular emphasis on high-end commercial
applications in medical and scientific fields as well as in the
aerospace and military industries.
The book presents novel Computational Fluid Dynamics (CFD) techniques to compute offshore wind and tidal applications. The papers in this volume are based on a mini-symposium held at ECCOMAS 2018. Computational fluid dynamics (CFD) techniques are regarded as the main design tool to explore the new engineering challenges presented by offshore wind and tidal turbines for energy generation. The difficulty and costs of undertaking experimental tests in offshore environments have increased the interest in CFD which is used to design appropriate turbines and blades, understand fluid flow physical phenomena associated with offshore environments, predict power production or characterise offshore environments amongst other topics.
This textbook presents all the mathematical and physical concepts needed to visualize and understand representation surfaces, providing readers with a reliable and intuitive understanding of the behavior and properties of anisotropic materials, and a sound grasp of the directionality of material properties. They will learn how to extract quantitative information from representation surfaces, which encode tremendous amounts of information in a very concise way, making them especially useful in understanding higher order tensorial material properties (piezoelectric moduli, elastic compliance and rigidity, etc.) and in the design of applications based on these materials. Readers will also learn from scratch concepts on crystallography, symmetry and Cartesian tensors, which are essential for understanding anisotropic materials, their design and application. The book describes how to apply representation surfaces to a diverse range of material properties, making it a valuable resource for material scientists, mechanical engineers, and solid state physicists, as well as advanced undergraduates in Materials Science, Solid State Physics, Electronics, Optics, Mechanical Engineering, Composites and Polymer Science. Moreover, the book includes a wealth of worked-out examples, problems and exercises to help further understanding.
Practical Micromechanics of Composite Materials provides an accessible treatment of micromechanical theories for the analysis and design of multi-phased composites. Written with both students and practitioners in mind and coupled with a fully functional MATLAB code to enable the solution of technologically relevant micromechanics problems, the book features an array of illustrative example problems and exercises highlighting key concepts and integrating the MATLAB code. The MATLAB scripts and functions empower readers to enhance and create new functionality tailored to their needs, and the book and code highly complement one another. The book presents classical lamination theory and then proceeds to describe how to obtain effective anisotropic properties of a unidirectional composite (ply) via micromechanics and multiscale analysis. Calculation of local fields via mechanical and thermal strain concentration tensors is presented in a unified way across several micromechanics theories. The importance of these local fields is demonstrated through the determination of consistent Margins of Safety (MoS) and failure envelopes for thermal and mechanical loading. Finally, micromechanics-based multiscale progressive damage is discussed and implemented in the accompanying MATLAB code.
Instabilities of fluid flows and the associated transitions between different possible flow states provide a fascinating set of problems that have attracted researchers for over a hundred years. This book addresses state-of-the-art developments in numerical techniques for computational modelling of fluid instabilities and related bifurcation structures, as well as providing comprehensive reviews of recently solved challenging problems in the field.
Techniques for Adaptive Control compiles chapters from a team of
expert contributors that allow readers to gain a perspective into a
number of different approaches to adaptive control. In order to do
this, each contributor provides an overview of a particular
product, how it works, and reasons why a user would want it as well
as an in depth explanation of their particular method.
The volume includes 30 contributions from the 3rd International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines representing the frontiers in the mechanics of controlled machines and structures. The Workshop, held in Perm, Russia in September 2017 continued a series of international workshops, starting in with the Japan - Austria Joint Workshop on Mechanics and Model Based Control of Smart Materials and Structures, the Russia - Austria Joint Workshop on Advanced Dynamics and Model Based Control of Structures and Machines and the first two editions of the International Workshop on Advanced Dynamics and Model Based Control of Structures and Machines. The previous workshops took place in Linz, Austria in September 2008 and April 2010, in St. Petersburg, Russia in July 2012 and in Vienna, Austria in September 2015. The up-to-date contributions are authored by internationally re-known leading experts in dynamics and control representing a broad spectrum of topics in the field of Advanced Structures and Machines; both, with respect to theoretical aspects as well as applications to contemporary engineering problems.
For courses in Engineering Design. Engineering By Design introduces students to a broad range of important design topics. The engineering design process provides the skeletal structure for the text, around which is wrapped numerous cases that illustrate both successes and failures in engineering design. The text provides a balance of qualitative presentation of engineering practices that can be understood by students with little technical knowledge and a more quantitative approach in which substantive analytical techniques are used to develop and evaluate proposed engineering solutions. This flexibility means that the text can be used in a wide variety of courses. |
You may like...
Meriam's Engineering Mechanics…
James L. Meriam, L.G. Kraige, …
Paperback
R1,406
Discovery Miles 14 060
Beyond the Saga of Rocket Science - The…
Walter Sierra
Hardcover
|