|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Structural Health Monitoring (SHM) in Aerospace Structures provides
readers with the spectacular progress that has taken place over the
last twenty years with respect to the area of Structural Health
Monitoring (SHM). The widespread adoption of SHM could both
significantly improve safety and reduce maintenance and repair
expenses that are estimated to be about a quarter of an aircraft
fleet's operating costs. The SHM field encompasses
transdisciplinary areas, including smart materials, sensors and
actuators, damage diagnosis and prognosis, signal and image
processing algorithms, wireless intelligent sensing, data fusion,
and energy harvesting. This book focuses on how SHM techniques are
applied to aircraft structures with particular emphasis on
composite materials, and is divided into four main parts. Part One
provides an overview of SHM technologies for damage detection,
diagnosis, and prognosis in aerospace structures. Part Two moves on
to analyze smart materials for SHM in aerospace structures, such as
piezoelectric materials, optical fibers, and flexoelectricity. In
addition, this also includes two vibration-based energy harvesting
techniques for powering wireless sensors based on piezoelectric
electromechanical coupling and diamagnetic levitation. Part Three
explores innovative SHM technologies for damage diagnosis in
aerospace structures. Chapters within this section include sparse
array imaging techniques and phase array techniques for damage
detection. The final section of the volume details innovative SHM
technologies for damage prognosis in aerospace structures. This
book serves as a key reference for researchers working within this
industry, academic, and government research agencies developing new
systems for the SHM of aerospace structures and materials
scientists.
Reliability, Risk and Safety: Back to the Future covers topics on
reliability, risk and safety issues, including risk and reliability
analysis methods, maintenance optimization, human factors, and risk
management. The application areas range from nuclear engineering,
oil and gas industry, electrical and civil engineering to
information technology and communication, security, transportation,
health and medicine or critical infrastructures. Significant
attention is paid to societal factors influencing the use of
reliability and risk assessment methods, and to combinatorial
analysis, which has found its way into the analysis of
probabilities and risk, from which quantified risk analysis
developed. Integral demonstrations of the use of risk analysis and
safety assessment are provided in many practical applications
concerning major technological systems and structures. Reliability,
Risk and Safety: Back to the Future will be of interest to
academics and engineers interested in nuclear engineering, oil and
gas engineering, electrical engineering, civil engineering,
information technology, communication, and infrastructure.
Advances in Applied Mechanics draws together recent, significant
advances in various topics in applied mechanics. Published since
1948, the book aims to provide authoritative review articles on
topics in the mechanical sciences. The book will be of great
interest to scientists and engineers working in the various
branches of mechanics, but will also be beneficial to professionals
who use the results of investigations in mechanics in various
applications, such as aerospace, chemical, civil, environmental,
mechanical, and nuclear engineering.
Modeling of Chemical Wear is a one-stop resource for students,
researchers and professionals seeking quick and effective
tribological evaluations of environmentally friendly and energy
efficient products. This book considers optimizing additive
combinations by proper methodology, bridging the gap between theory
and practice. It defines effective approaches to evaluate antiwear
chemical additives commonly used in industry, enhancing the mapping
ability of their performance to reduce the extent of full scale
evaluations.
Improve and optimize efficiency of HVAC and related energy systems
from an exergy perspective. From fundamentals to advanced
applications, Exergy Analysis of Heating, Air Conditioning, and
Refrigeration provides readers with a clear and concise description
of exergy analysis and its many uses. Focusing on the application
of exergy methods to the primary technologies for heating,
refrigerating, and air conditioning, Ibrahim Dincer and Marc A.
Rosen demonstrate exactly how exergy can help improve and optimize
efficiency, environmental performance, and cost-effectiveness. The
book also discusses the analysis tools available, and includes many
comprehensive case studies on current and emerging systems and
technologies for real-world examples. From introducing exergy and
thermodynamic fundamentals to presenting the use of exergy methods
for heating, refrigeration, and air conditioning systems, this book
equips any researcher or practicing engineer with the tools needed
to learn and master the application of exergy analysis to these
systems.
Sucker-Rod Pumping Handbook presents the latest information on the
most common form of production enhancement in today's oil industry,
making up roughly two-thirds of the producing oilwell operations in
the world. The book begins with an introduction to the main
features of sucker rod pumping and an explanation and comparison of
lift methods. It goes on to provide the technical and practical
knowledge needed to introduce the new and practicing production
engineer and operator to the equipment, technology, and
applications required to maintain optimum operating conditions.
Sucker-Rod Pumping Handbook is a must-have manual that ensures
operators understand the design, components, and operation of
sucker rod pump systems, learn the functions of the systems, apply
the fundamental production engineering theories and calculations,
and accomplish maximum system efficiency by avoiding the typical
pitfalls that lead to fatigue and failure.
The rail-based transit system is a popular public transportation
option, not just with members of the public but also with policy
makers looking to install a form of convenient and rapid travel.
Even for moving bulk freight long distances, a rail-based system is
the most sustainable transportation system currently available. The
Handbook of Research on Emerging Innovations in Rail Transportation
Engineering presents the latest research on next-generation public
transportation infrastructures. Emphasizing a diverse set of topics
related to rail-based transportation such as funding issues, policy
design, traffic planning and forecasting, and engineering
solutions, this comprehensive publication is an essential resource
for transportation planners, engineers, policymakers, and
graduate-level engineering students interested in uncovering
research-based solutions, recommendations, and examples of modern
rail transportation systems.
|
|