![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. Students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications will find this book a welcomed resource.
Fractional Order Systems: An Overview of Mathematics, Design, and Applications for Engineers introduces applications from a design perspective, helping readers plan and design their own applications. The book includes the different techniques employed to design fractional-order systems/devices comprehensively and straightforwardly. Furthermore, mathematics is available in the literature on how to solve fractional-order calculus for system applications. This book introduces the mathematics that has been employed explicitly for fractional-order systems. It will prove an excellent material for students and scholars who want to quickly understand the field of fractional-order systems and contribute to its different domains and applications. Fractional-order systems are believed to play an essential role in our day-to-day activities. Therefore, several researchers around the globe endeavor to work in the different domains of fractional-order systems. The efforts include developing the mathematics to solve fractional-order calculus/systems and to achieve the feasible designs for various applications of fractional-order systems.
Tactile Sensing, Skill Learning and Robotic Dexterous Manipulation focuses on cross-disciplinary lines of research and groundbreaking research ideas in three research lines: tactile sensing, skill learning and dexterous control. The book introduces recent work about human dexterous skill representation and learning, along with discussions of tactile sensing and its applications on unknown objects' property recognition and reconstruction. Sections also introduce the adaptive control schema and its learning by imitation and exploration. Other chapters describe the fundamental part of relevant research, paying attention to the connection among different fields and showing the state-of-the-art in related branches. The book summarizes the different approaches and discusses the pros and cons of each. Chapters not only describe the research but also include basic knowledge that can help readers understand the proposed work, making it an excellent resource for researchers and professionals who work in the robotics industry, haptics and in machine learning.
Energy Methods and Finite Element Techniques: Stress and Vibration Applications provides readers with a complete understanding of the theory and practice of finite element analysis using energy methods to better understand, predict, and mitigate static stress and vibration in different structural and mechanical configurations. It presents readers with the underlying theory, techniques for implementation, and field-tested applications of these methods using linear ordinary differential equations. Statistical energy analysis and its various applications are covered, and applications discussed include plate problems, bars and beams, plane strain and stress, 3D elasticity problems, vibration problems, and more. Higher order plate and shell elements, steady state heat conduction, and shape function determinations and numerical integration are analyzed as well.
Mechanics of Fibrous Networks covers everything there is to know about the mechanics of fibrous networks, from basic analysis of simple networks to the characterization of complex cases of deformation, loading, damage and fracture. Looking at various types of fibrous materials, the book studies their microstructural characterization, quantification of their mechanical properties, and performance at fiber and network levels. In addition, the book outlines numerical strategies for simulation, design and optimization of fibrous products. Techniques for testing the mechanical response of these materials in different loading and environmental conditions are outlined as well. This comprehensive resource will aid readers in obtaining qualitative data for various fibrous networks. In addition, it will help them develop modeling strategies and fine-tune mechanical performance fibrous networks and products by changing their microstructure to develop new products with desired properties and performance.
Bioengineering is a rapidly expanding interdisciplinary field that encompasses application engineering techniques in the field of mechanical engineering, electrical, electronics and instrumentation engineering, and computer science and engineering to solve the problems of the biological world. With the advent to digital computers and rapidly developing computational techniques, computer simulations are widely used as a predictive tool to supplement the experimental techniques in engineering and technology. Computational biomechanics is a field where the movements biological systems are assessed in the light of computer algorithms describing solid and fluid mechanical principles. This book outlines recent developments in the field of computational biomechanics. It presents a series of computational techniques that are the backbone of the field that includes finite element analysis, multi-scale modelling, fluid-solid interaction, mesh-less techniques and topological optimization. It also presents a series of case studies highlighting applications of these techniques in different biological system and different case studies detailing the application of the principles described earlier and the outcomes. This book gives an overview of the current trends and future directions of research and development in the field of computational biomechanics. Overall, this book gives insight into the current trends of application of intelligent computational techniques used to analyse a multitude of phenomena the field of biomechanics. It elaborates a series of sophisticated techniques used for computer simulation in both solid mechanics, fluid mechanics and fluid-solid interface across different domain of biological world and across various dimensional scales along with relevant case studies. The book elucidates how human locomotion to bacterial swimming, blood flow to sports science, these wide range of phenomena can be analyzed using computational methods to understand their inherent mechanisms of work and predict the behavior of the system. The target audience of the book will be post-graduate students and researchers in the field of Biomedical Engineering. Also industry professionals in biomedical engineering and allied disciplines including but not limited to kinesiologists and clinicians, as well as, computer engineers and applied mathematicians working in algorithm development in biomechanics.
Mechanics of Multiscale Hybrid Nanocomposites provides a practical and application-based investigation of both static and dynamic behaviors of multiscale hybrid nanocomposites. The book outlines how to predict the mechanical behavior and material characteristics of these nanocomposites via two-step micromechanical homogenization techniques performed in an energy-based approach that is incorporated with the strain-displacement relations of shear deformable beam, plate and shell theories. The effects of using various nanofillers are detailed, providing readers with the best methods of improving nanocomposite stiffness. Both numerical (Ritz, Rayleigh-Ritz, etc.) and analytical (Navier, Galerkin, etc.) solution methods are outlined, along with examples and techniques.
Advances in Heat Transfer, Volume 53 in this long-running serial, highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors.
Molecular Dynamic Simulation: Fundamentals and Applications explains the basic principles of MD simulation and explores its recent developments and roles in advanced modeling approaches. The implementation of MD simulation and its application to various aspects of materials science and engineering including mechanical, thermal, mass transportation, and physical/chemical reaction problems are illustrated. Innovative modeling techniques that apply MD to explore the mechanics of typical nanomaterials and nanostructures and to characterize crystalline, amorphous, and liquid systems are also presented. The rich research experience of the authors in MD simulation will ensure that the readers are provided with both an in-depth understanding of MD simulation and clear technical guidance.
Solid State Physics, Volume 72, the latest release in this long-running serial, highlights new advances in the field with this new volume presenting interesting and timely chapters authored by an international board of experts. Chapters in this release include Roadmap: The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, The influence of the internal domain wall structure on spin wave band structure in periodic magnetic stripe domain patterns, and more.
This new edition draws upon the fundamentals of abrasive machining processes and the science of tribology to understand, predict, and improve abrasive machining processes. Each of the main elements of the abrasive machining system is looked at alongside the tribological factors that control the efficiency and quality of the processes described. The new edition has been updated to include a variety of industrial applications. Grinding and conditioning of grinding tools are dealt with in particular detail, and solutions are proposed for many of the most commonly experienced industrial problems, such as poor accuracy, poor surface quality, rapid tool wear, vibrations, workpiece burn, and high process costs. The entire book has been rewritten and restructured, with ten completely new chapters. Other new features include:
Cyclic Plasticity of Metals: Modeling Fundamentals and Applications provides an exhaustive overview of the fundamentals and applications of various cyclic plasticity models including forming and spring back, notch analysis, fatigue life prediction, and more. Covering metals with an array of different structures, such as hexagonal close packed (HCP), face centered cubic (FCC), and body centered cubic (BCC), the book starts with an introduction to experimental macroscopic and microscopic observations of cyclic plasticity and then segues into a discussion of the fundamentals of the different cyclic plasticity models, covering topics such as kinematics, stress and strain tensors, elasticity, plastic flow rule, and an array of other concepts. A review of the available models follows, and the book concludes with chapters covering finite element implementation and industrial applications of the various models.
Machining and Tribology provides insight into both the role of tribology in machining and the effects of various machining processes on tribology, exploring topics such as machining mechanisms, coolant technology, tool wear, and more. Covering the latest research, the book starts by looking at the tribological aspects of turning, milling, and drilling processes. From there, it explores the effects of different coolants such as flood, minimum quantity lubrication, and cryogenics on machining forces, tool wear, friction, chip formation, and surface generation during various machining processes. Tribological considerations of machined components follow, and the volume concludes with chapters covering simulation scenarios for predicting machining forces, tool wear, surface generation, and chip formation.
Multiphysics Simulations in Automotive and Aerospace Applications provides the fundamentals and latest developments on numerical methods for solving multiphysics problems, including fluid-solid interaction, fluid-structure-thermal coupling, electromagnetic-fluid-solid coupling, vibro and aeroacoustics. Chapters describe the different algorithms and numerical methods used for solving coupled problems using implicit or explicit coupling problems from industrial or academic applications. Given the book's comprehensive coverage, automotive and aerospace engineers, designers, graduate students and researchers involved in the simulation of practical coupling problems will find the book useful in its approach.
The Beginnings of Electron Microscopy - Part 1, Volume 220 in the Advances in Imaging and Electron Physics series highlights new advances in the field, with this new volume presenting interesting chapters on Electron-optical Research at the AEG Forschungs-Institut 1928-1940, On the History of Scanning Electron Microscopy, of the Electron Microprobe, and of Early Contributions to Transmission Electron Microscopy, Random Recollections of the Early Days, Early History of Electron Microscopy in Czechoslovakia, Personal Reminiscences of Early Days in Electron, Megavolt Electron Microscopy, Cryo-Electron Microscopy and Ultramicrotomy: Reminiscences and Reflections, and much more.
Mem-elements for Neuromorphic Circuits with Artificial Intelligence Applications illustrates recent advances in the field of mem-elements (memristor, memcapacitor, meminductor) and their applications in nonlinear dynamical systems, computer science, analog and digital systems, and in neuromorphic circuits and artificial intelligence. The book is mainly devoted to recent results, critical aspects and perspectives of ongoing research on relevant topics, all involving networks of mem-elements devices in diverse applications. Sections contribute to the discussion of memristive materials and transport mechanisms, presenting various types of physical structures that can be fabricated to realize mem-elements in integrated circuits and device modeling. As the last decade has seen an increasing interest in recent advances in mem-elements and their applications in neuromorphic circuits and artificial intelligence, this book will attract researchers in various fields. |
You may like...
Artificial Neural Networks for Renewable…
Ammar Hamed Elsheikh, Mohamed Elasyed Abd elaziz
Paperback
R3,286
Discovery Miles 32 860
Toward an Other Globalization: From the…
Lucas Melgaco, Tim Clarke
Hardcover
R2,737
Discovery Miles 27 370
Organisational Behaviour - Managing…
Jean Phillips, Ricky Griffin, …
Paperback
R850
Discovery Miles 8 500
Adaptive Neural Network Control Of…
Sam Shuzhi Ge, Christopher J. Harris, …
Hardcover
R3,516
Discovery Miles 35 160
Ensemble Machine Learning - Methods and…
Cha Zhang, Yunqian Ma
Hardcover
R5,863
Discovery Miles 58 630
|