![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Ultra-High Temperature Thermal Energy Storage, Transfer and Conversion presents a comprehensive analysis of thermal energy storage systems operating at beyond 800 DegreesC. Editor Dr. Alejandro Datas and his team of expert contributors from a variety of regions summarize the main technological options and the most relevant materials and characterization considerations to enable the reader to make the most effective and efficient decisions. This book helps the reader to solve the very specific challenges associated with working within an ultra-high temperature energy storage setting. It condenses and summarizes the latest knowledge, covering fundamentals, device design, materials selection and applications, as well as thermodynamic cycles and solid-state devices for ultra-high temperature energy conversion. This book provides a comprehensive and multidisciplinary guide to engineers and researchers in a variety of fields including energy conversion, storage, cogeneration, thermodynamics, numerical methods, CSP, and materials engineering. It firstly provides a review of fundamental concepts before exploring numerical methods for fluid-dynamics and phase change materials, before presenting more complex elements such as heat transfer fluids, thermal insulation, thermodynamic cycles, and a variety of energy conversation methods including thermophotovoltaic, thermionic, and combined heat and power.
Microelectromechanical systems (MEMS) device applications are common in many areas. Micromirror arrays are used as video projectors; microsensors find their application for measuring acceleration, temperature, and pressure; and they can also be used in the medical field for measuring blood pressure. Microfluidics have also been widely employed in life sciences applications, such as drug development and administration, point-of-care devices, and more. To use these technologies to their fullest extent, further research is needed. Advances in MEMS and Microfluidic Systems explores the emerging research and advances in MEMS devices and microfluidic systems applications. It features in-depth chapters on microfluidic device design and fabrication as well as on the aspects of devices/systems, characterization, and comparative research findings. Covering topics such as biosensors, lab-on-a-chip, and microfluidic technology, this premier reference source is an indispensable resource for engineers, health professionals, students and educators of higher education, librarians, researchers, and academicians.
A Practical Approach to Fracture Mechanics provides a concise overview on the fundamental concepts of fracture mechanics, discussing linear elastic fracture mechanics, fracture toughness, ductile fracture, slow crack propagation, structural integrity, and more. The book outlines analytical and experimental methods for determining the fracture resistance of mechanical and structural components, also demonstrating the use of fracture mechanics in failure analysis, reinforcement of cracked structures, and remaining life estimation. The characteristics of crack propagation induced by fatigue, stress-corrosion, creep, and absorbed hydrogen are also discussed. The book concludes with a chapter on the structural integrity analysis of cracked components alongside a real integrity assessment. This book will be especially useful for students in mechanical, civil, industrial, metallurgical, aeronautical and chemical engineering, and for professional engineers looking for a refresher on core principles.
Size Effects in Engineering Mechanics and Manufacturing provides a detailed evaluation of size effects in mechanics, manufacturing and material sciences and their effects on related physical behaviors and phenomena. Sections address the physical aspects of size effects, including tension, compression, and bending deformation in mechanics, fatigue and damage behaviors, the mechanisms behind these effects, modeling techniques for determining the behavior and phenomena of size effects, practical applications of size effects in material sciences and micro-manufacturing, how size effects influence the process performance, process outcome, properties and quality of fabricated parts and components, and future size effects. This book provides not only a reference volume on size effects but also valuable applications for engineers, scientists, academics and research students involved in materials processing, manufacturing, materials science and engineering, engineering mechanics, mechanical engineering and the management of enterprises using materials processing technologies in the mass-production of related products.
Power Converter with Digital Filter Feedback Control presents a logical sequence that leads to the identification, extraction, formulation, conversion, and implementation for the control function needed in electrical power equipment systems. This book builds a bridge for moving a power converter with conventional analog feedback to one with modern digital filter control and enlists the state space averaging technique to identify the core control function in analytical, close form in s-domain (Laplace). It is a useful reference for all professionals and electrical engineers engaged in electrical power equipment/systems design, integration, and management.
Modeling of Chemical Wear is a one-stop resource for students, researchers and professionals seeking quick and effective tribological evaluations of environmentally friendly and energy efficient products. This book considers optimizing additive combinations by proper methodology, bridging the gap between theory and practice. It defines effective approaches to evaluate antiwear chemical additives commonly used in industry, enhancing the mapping ability of their performance to reduce the extent of full scale evaluations.
Digital controllers are part of nearly all modern personal, industrial, and transportation systems. Every senior or graduate student of electrical, chemical, or mechanical engineering should therefore be familiar with the basic theory of digital controllers. This new text covers the fundamental principles and applications of digital control engineering, with emphasis on engineering design. Fadali and Visioli cover analysis and design of digitally controlled systems and describe applications of digital control in a wide range of fields. With worked examples and Matlab applications in every chapter and many end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer.
Design for Additive Manufacturing is a complete guide to design tools for the manufacturing requirements of AM and how they can enable the optimization of process and product parameters for the reduction of manufacturing costs and effort. This timely synopsis of state-of-the-art design tools for AM brings the reader right up-to-date on the latest methods from both academia and industry. Tools for both metallic and polymeric AM technologies are presented and critically reviewed, along with their manufacturing attributes. Commercial applications of AM are also explained with case studies from a range of industries, thus demonstrating best-practice in AM design.
Pultrusion: State-of-the-Art Process Models with Applications, Second Edition is a detailed guide to pultrusion, providing methodical coverage of process models and computation simulation, governing principles and science, and key challenges to help readers enable process optimization and scale-up. This new edition has been revised and expanded to include the latest advances, state-of-the-art process models, and governing principles. The main challenges in pultrusion, such as the process induced residual stresses, shape distortions, thermal history, species conversion, phase changes, impregnation of the reinforcements and pulling force are described, with related examples are provided. Moreover, strategies for having a reliable and optimized process using probabilistic approaches and optimization algorithms are summarized. Another focus of this book is on the thermo-chemical and mechanical analyses of the pultrusion process for industrial profiles.
Advances in Imaging and Electron Physics, Volume 227 in the Advances in Imaging and Electron Physics series, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Recent Advances in Topological Ferroics and Their Dynamics, Volume 70 in the Solid State Physics series, provides the latest information on the branch of physics that is primarily devoted to the study of matter in its solid phase, especially at the atomic level. This prestigious serial presents timely and state-of-the-art reviews pertaining to all aspects of solid state physics.
Advances in Imaging and Electron Physics, Volume 212, merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features extended articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains.
Ductile Fracture in Metal Forming: Modeling and Simulation examines the current understanding of the mechanics and physics of ductile fracture in metal forming processes while also providing an approach to micromechanical ductile fracture prediction that can be applied to all metal forming processes. Starting with an overview of different ductile fracture scenarios, the book then goes on to explain modeling techniques that predict a range of mechanical phenomena that can lead to ductile fracture. The challenges in creating micromechanical models are addressed alongside methods of applying these models to several common metal forming processes. This book is suitable for researchers working in mechanics of materials, metal forming, mechanical metallurgy, and plasticity. Engineers in R&D industries involved in metal forming such as manufacturing, aerospace, and automation will also find the book very useful.
|
You may like...
Quadratic and Higher Degree Forms
Krishnaswami Alladi, Manjul Bhargava, …
Hardcover
R4,056
Discovery Miles 40 560
Recent Developments in Fractals and…
Julien Barral, Stephane Seuret
Hardcover
R4,718
Discovery Miles 47 180
Algebraic Design Theory and Hadamard…
Charles J. Colbourn
Hardcover
Inverse Acoustic and Electromagnetic…
David Colton, Rainer Kress
Hardcover
R4,498
Discovery Miles 44 980
Fixed Point Theory and Graph Theory…
Monther Alfuraidan, Qamrul Ansari
Hardcover
R1,860
Discovery Miles 18 600
Models, Algorithms, and Technologies for…
Boris I. Goldengorin, Valery A. Kalyagin, …
Hardcover
R3,328
Discovery Miles 33 280
The Mathematical Legacy of Srinivasa…
M. Ram Murty, V. Kumar Murty
Hardcover
R3,939
Discovery Miles 39 390
|