![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Mechanical engineering
Multiscale Modeling Approaches for Composites outlines the fundamentals of common multiscale modeling techniques and provides detailed guidance for putting them into practice. Various homogenization methods are presented in a simple, didactic manner, with an array of numerical examples. The book starts by covering the theoretical underpinnings of tensors and continuum mechanics concepts, then passes to actual micromechanic techniques for composite media and laminate plates. In the last chapters the book covers advanced topics in homogenization, including Green's tensor, Hashin-Shtrikman bounds, and special types of problems. All chapters feature comprehensive analytical and numerical examples (Python and ABAQUS scripts) to better illustrate the theory.
Advances are continuously being made in applying the coatings and surface treatments by different techniques to reduce the damages from tribology. Engineers need more detailed information to compare the capability of each coating process in wear resistant and lubrication applications. It is also important to focus on the concepts of tribology in various applications such as the manufacturing process, bio implants, machine elements, and corrosive environments. The need for a comprehensive resource addressing these findings in order to improve wear resistance is unavoidable. Tribology in Coatings and Surface Treatment: Technology, Properties, and Applications evaluates the latest advances the fabrication of wear-resistant and lubricant coatings by different techniques and investigates wear-resistant coatings and surface treatments in various applications such as the automobile industry. Covering a wide range of topics such as lubricant coatings and wearable electronic devices, it is ideal for engineers, industry professionals, researchers, academicians, scholars, practitioners, instructors, and students.
Tribocorrosion: Fundamentals, Methods, and Materials provides a balanced coverage of recent advancements in both experimental and computational areas of tribocorrosion, covering the basic concepts of tribology and electrochemistry, as well as testing set-ups, protocols, electrochemical methods, and more. It outlines experimental methods, demonstrating the different effects of material loss due to mechanical and electrochemical actions and looks at their effects in applied automotive, aerospace and biomedical settings. Standard testing protocols, tribocorrosion mechanisms in sliding contacts, and modeling and simulation techniques are all covered at length, as is bio-tribocorrosion and the best ways to prevent it.
Estimation and Control of Large Scale Networked Systems is the first book that systematically summarizes results on large-scale networked systems. In addition, the book also summarizes the most recent results on structure identification of a networked system, attack identification and prevention. Readers will find the necessary mathematical knowledge for studying large-scale networked systems, as well as a systematic description of the current status of this field, the features of these systems, difficulties in dealing with state estimation and controller design, and major achievements. Numerical examples in chapters provide strong application backgrounds and/or are abstracted from actual engineering problems, such as gene regulation networks and electricity power systems. This book is an ideal resource for researchers in the field of systems and control engineering.
Mathematical Techniques of Fractional Order Systems illustrates advances in linear and nonlinear fractional-order systems relating to many interdisciplinary applications, including biomedical, control, circuits, electromagnetics and security. The book covers the mathematical background and literature survey of fractional-order calculus and generalized fractional-order circuit theorems from different perspectives in design, analysis and realizations, nonlinear fractional-order circuits and systems, the fractional-order memristive circuits and systems in design, analysis, emulators, simulation and experimental results. It is primarily meant for researchers from academia and industry, and for those working in areas such as control engineering, electrical engineering, computer science and information technology. This book is ideal for researchers working in the area of both continuous-time and discrete-time dynamics and chaotic systems.
This third volume of the new ASME Press Book Series on Renewable Energy also edited by Dr. Rao and published by ASME Press is based on updated chapters from the classic 2011 Handbook of Energy and Power Generation in addition to a new chapter appropriate for the title of this book. The discussions in this book update Wind Energy since the publication of 2011 Handbook by Dr. Rao in Chapters 1, 2, 3 and 4. Since the coverage in the 2011 Handbook is considered applicable even for the present it is retained in total with the contributions for original authors for Chapters 1, 2, 3 and 4 an update for Chapter 6, 7, 8 and 9 of the 2011 Handbook. Chapter 1 covers "NASA Developments and Potential"; Chapter 2 addresses "Scope of Wind Energy Generation Technologies since 2011"; and Chapter 3 "Scope of Wind Energy in the US since 2011; and Chapter 4 "Wind Energy in the Netherlands Since 2011". Chapter 5, an update of Chapter 10 of the 2011 Handbook is titled as before in the 2011 Handbook, "Role of Wind Energy Technology in India and Neighboring Countries" by original author M.P. Ramesh and finally the last Chapter 6 is a new Chapter "Artificial Intelligence in Wind Energy" by Dr. Weifei Hu. The book contains over 200 pages with 28 tables, 143 figures, 379 footnotes and over 102 additional references in this updated version. The book has an index as before in the original edition, to help users easily navigate through the text and graphics.
Up and Running with AutoCAD 2022: 2D and 3D Drawing, Design and Modeling presents a combination of step-by-step instruction, examples and insightful explanations. The book emphasizes core concepts and practical application of AutoCAD in engineering, architecture and design. Equally useful in instructor-led classroom training, self-study or as a professional reference, the book is written by a long-time AutoCAD professor and instructor with the user in mind.
From the time it was organized in 1880, the American Society of Mechanical Engineers recorded aspects of the history of the mechanical engineering profession and the careers of some of its notable practitioners. The Society's historical efforts were formalized in 1971 with the creation of a History and Heritage Committee. This volume commemorates the fiftieth anniversary of the formation of that committee and collects, in a single place, many of the historical contributions published over the past fifty years in ASME's flagship magazine, Mechanical Engineering. In preparation for the United States' bicentennial year, and later the Society's centennial, the editors of Mechanical Engineering contracted with engineer-historian Fritz Hirschfeld for a long series of articles about the county's early mechanical engineering heritage and the lives of notable mechanical engineers, particularly those associated with ASME's founding. Hirschfeld's articles form the foundation of this volume. To supplement Hirschfeld's work, the editors have added numerous other historical articles published in Mechanical Engineering. The engineering innovations described by these articles have been enormously important to the development of modern technological society, and the stories behind their development should be of interest to engineers interested in the history of their profession, as well as anyone interested in American history.
Multiphysics Simulations in Automotive and Aerospace Applications provides the fundamentals and latest developments on numerical methods for solving multiphysics problems, including fluid-solid interaction, fluid-structure-thermal coupling, electromagnetic-fluid-solid coupling, vibro and aeroacoustics. Chapters describe the different algorithms and numerical methods used for solving coupled problems using implicit or explicit coupling problems from industrial or academic applications. Given the book's comprehensive coverage, automotive and aerospace engineers, designers, graduate students and researchers involved in the simulation of practical coupling problems will find the book useful in its approach.
Fractional-Order Design: Devices, Circuits, and Systems introduces applications from the design perspective so that the reader can learn about, and get ready to, design these applications. The book also includes the different techniques employed to comprehensively and straightforwardly design fractional-order systems/devices. Furthermore, a lot of mathematics is available in the literature for solving the fractional-order calculus for system application. However, a small portion is employed in the design of fractional-order systems. This book introduces the mathematics that has been employed explicitly for fractional-order systems. Students and scholars who wants to quickly understand the field of fractional-order systems and contribute to its different domains and applications will find this book a welcomed resource.
An ideal - and affordable - text for engineers and maintenance professionals with an interest in vibration monitoring. This title does not attempt to baffle with the technology, but introduces it at an understandable level, touching on the basic theory and concepts, available equipment and practical issues relevant to the engineer as well as highlighting several case studies with which the reader can relate. Other books in this series focus on corrosion, vibration, thermography, noise, ultrasonics and acoustic emission, level, leakage and flow, oil analysis, load monitoring and a superb Concise Encyclopaedia that includes introductory notes on all of the above techiques as well as others.
Applications of Viscoelasticity: Bituminous Materials Characterization and Modeling starts with an introduction to the theory of viscoelasticity, emphasizing its importance to various applications in material characterization and modeling. It next looks at constitutive viscoelastic functions, outlines basic equations for different loading conditions, and introduces the Boltzmann superposition principle, relaxation modulus, and creep compliance. Mechanical models, including integer-order and fractional-order are studied next, featuring real experimentation data alongside the benefits and drawbacks of using each model in various real-world scenarios. The book then covers the correspondence principle, followed by time-temperature superposition, featuring a simple procedure to construct a real master curve and challenges that might be encountered. The concluding chapters cover the Hopkins and Hamming, Park and Kim, and General Power law methods for interconversion of constitutive viscoelastic functions, applications of viscoelasticity for experimental tests, and incremental form of viscoelastic relations for numerical modeling. The book also includes supplementary codes that users can duplicate and use in their own work.
Pipe Drafting and Design, Fourth Edition is a tried and trusted guide to the terminology, drafting methods, and applications of pipes, fittings, flanges, valves, and more. Those new to this subject will find no better introduction on the topic, with easy step-by-step instructions, exercises, review questions, hundreds of clear illustrations, explanations of drawing techniques, methodology and symbology for piping and instrumentation diagrams, piping arrangement drawings and elevations, and piping isometric drawings. This fully updated and expanded new edition also explains procedures for building 3D models and gives examples of field-scale projects showing flow diagrams and piping arrangement drawings in the real world. The latest relevant standards and codes are also addressed, making this a valuable and complete reference for experienced engineers, too.
Advances in Imaging and Electron Physics, Volume 218 merges two long-running serials, Advances in Electronics and Electron Physics and Advances in Optical and Electron Microscopy. The series features articles on the physics of electron devices (especially semiconductor devices), particle optics at high and low energies, microlithography, image science, digital image processing, electromagnetic wave propagation, electron microscopy and the computing methods used in all these domains. Specific chapters in this release cover Phase retrieval methods applied to coherent imaging, X-ray phase-contrast imaging: a broad overview of some fundamentals, Graphene and borophene as nanoscopic materials for electronics - with review of the physics, and more. |
You may like...
Advances in Heat Transfer, Volume 50
Ephraim M. Sparrow, John Patrick Abraham, …
Hardcover
R4,671
Discovery Miles 46 710
Aircraft Design Projects - For…
Lloyd R. Jenkinson, Jim Marchman
Paperback
R1,465
Discovery Miles 14 650
Biolubricants - Science and Technology
J.C.J. Bart, E. Gucciardi, …
Hardcover
R6,096
Discovery Miles 60 960
Material Modeling with the Visco-Plastic…
Carlos N. Tome, Ricardo A. Lebensohn
Paperback
R5,403
Discovery Miles 54 030
Power Recovery from Low Grade Heat by…
Ian Smith, Nikola Stosic, …
Hardcover
R3,515
Discovery Miles 35 150
|