![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
For courses in fluid mechanics. This package includes Pearson MasteringEngineering (TM). Introduces engineering students to the principles of fluid mechanics. Written and conceived by an author with decades of relevant experience in the fields of fluid mechanics, engineering, and related disciplines, this First Edition of Fluid Mechanics for Engineers effectively introduces engineering students to the principles of fluid mechanics. With the understanding that fluid mechanics is a required core course for most engineering students, the author focuses first and foremost on the most essential topics of the field. Practical applications for several engineering disciplines are considered, with a special focus on civil engineering. Elective topics are also included for instructors' consideration with regard to specific courses. Written in a stimulating style, Fluid Mechanics for Engineers fulfills the requirements of a core course while keeping students engaged. This package includes Pearson MasteringEngineering, an online homework, tutorial, and assessment program designed to work with this text to engage students and improve results. Interactive, self-paced tutorials provide individualized coaching to help students stay on track. With a wide range of activities available, students can actively learn, understand, and retain even the most difficult concepts. The text and Pearson MasteringEngineering work together to guide students through engineering concepts with a multi-step approach to problems. Pearson MasteringEngineering should only be purchased when required by an instructor. Please be sure you have the correct ISBN and Course ID. Instructors, contact your Pearson representative for more information.
The triple deck structure shows how a perturbation to the thin layer of a fluid immediately adjacent (boundary layer) to an obstacle such as an aeroplane wing develops as an interaction between the pressure and a displacement of the boundary layer. The theory was a major advance in fluid mechanics at the end of the twentieth century. This book provides a graduate level description of some history of boundary layer flow and the application of the triple deck in fluid mechanics.
This book is for engineers and students to solve issues concerning the fluidized bed systems. It presents an analysis that focuses directly on the problem of predicting the fluid dynamic behavior which empirical data is limited or unavailable. The second objective is to provide a treatment of computational fluidization dynamics that is readily accessible to the non-specialist. The approach adopted in this book, starting with the formulation of predictive expressions for the basic conservation equations for mass and momentum using kinetic theory of granular flow. The analyses presented in this book represent a body of simulations and experiments research that has appeared in numerous publications over the last 20 years. This material helps to form the basis for university course modules in engineering and applied science at undergraduate and graduate level, as well as focused, post-experienced courses for the process, and allied industries.
This textbook presents numerical solution techniques for incompressible turbulent flows that occur in a variety of scientific and engineering settings including aerodynamics of ground-based vehicles and low-speed aircraft, fluid flows in energy systems, atmospheric flows, and biological flows. This book encompasses fluid mechanics, partial differential equations, numerical methods, and turbulence models, and emphasizes the foundation on how the governing partial differential equations for incompressible fluid flow can be solved numerically in an accurate and efficient manner. Extensive discussions on incompressible flow solvers and turbulence modeling are also offered. This text is an ideal instructional resource and reference for students, research scientists, and professional engineers interested in analyzing fluid flows using numerical simulations for fundamental research and industrial applications.
This book comprises the select proceedings of the International Conference on Future Learning Aspects of Mechanical Engineering (FLAME 2020). This volume focuses on current research in fluid and thermal engineering and covers topics such as heat transfer enhancement and heat transfer equipment, heat transfer in nuclear applications, microscale and nanoscale transport, multiphase transport and phase change, multi-mode heat transfer, numerical methods in fluid mechanics and heat transfer, refrigeration and air conditioning, thermodynamics, space heat transfer, transport phenomena in porous media, turbulent transport, theoretical and experimental fluid dynamics, flow measurement techniques and instrumentation, computational fluid dynamics, fluid machinery, turbo machinery and fluid power. Given the scope of its contents, this book will be interesting for students, researchers as well as industry professionals.
This book presents various dynamic processes in non-uniform piezoceramic cylindrical and spherical bodies based on numerical methods. It discusses different variants of nonhomogeneous structural polarized piezoceramic materials in the shape of cylinders and spheres, and highlights the validation of the reliability of the results obtained by numerical calculations. The content is based on an outlined theory and methods of three-dimensional electroelasticity problems.
Critical regimes of two-phase flows with a polydisperse solid phase form the basis of such widespread industrial processes as separation of various powdery materials and minerals dressing. It is impossible to describe such complicated flows analytically. Therefore, this study concentrates on invariants experimentally revealed and theoretically grounded for such flows. This approach can be compared with the situation in gases, where in order to determine principal parameters of their state, one does not need to measure the kinetic energy and velocity of each molecule and find its contribution to the temperature and pressure. These parameters are determined in a simple way for the system on the whole. A novel conception of two-phase flows allowing the formulation of their statistical parameters is physically substantiated. On the basis of the invariants and these parameters, a comprehensive method of estimating and predicting mass transfer in such flows is developed. It is noteworthy that the presented results are mostly phenomenological. Such an approach can be successfully extended to the separation of liquids, gases and isotopes. The book is intended for students and specialists engaged in chemical technology, mineral dressing, ceramics, microelectronics, pharmacology, power generation, thermal engineering and other fields in which flows carrying solid particles are used in the technological process.
The book covers various topics of heat transfer. It explains and analyzes several techniques and modes of heat transfer such as conduction in stationary media, convection in moving media and also by radiation. It is primarily a text book useful for undergraduate and postgraduate students. The book should also interest practicing engineers who wish to refresh their knowledge in the field. The book presents the various topics in a systematic way starting from first principles. The topics are developed to a fairly advanced level towards the end of each chapter. Several worked examples illustrate the engineering applications of the basic modeling tools developed in the text. The exercises at the end of the book are arranged chapter wise and challenge the reader to tackle typical real-life problems in heat transfer. This book will be of potential use for students of mechanical engineering, chemical engineering and metallurgy in most engineering colleges.
This book highlights the principles and technologies of flotation machine mainly used in mineral processing in detail. Froth flotation is one of the most important mineral processing techniques. Over 90% of the nonferrous minerals and 50% of the ferrous minerals in the world are treated using flotation: a complicated technique including procedures from chemistry, physics and multi-scale fluid mechanics. The book introduces readers to air-forced and air-induced flotation cells and discusses the various mechanical structures and working principles involved. A number of examples from industrial engineering practice are also discussed throughout the book, helping readers to better understand the technology and relevant equipment. The book is intended for researchers, professionals and graduate students in the fields of mining and mineral processing engineering.
"Dynamics of Tube Flow of Viscoelastic Fluids and Non-Colloidal Suspensions" is dedicated to the tube flow of viscoelastic fluids and Newtonian single and multi-phase particle-laden fluids.This succinct volume collects the most recent analytical developments and experimental findings, in particular in predicting the secondary field, highlighting the historical developments which led to the progress made. This book brings a fresh and unique perspective and covers and interprets efforts to model laminar flow of viscoelastic fluids in tubes and laminar and turbulent flow of single and multi-phase particle-laden flow of linear fluids in the light of the latest findings.
This book presents select proceedings of the International Conference on Applied Mathematics in Science and Engineering (AMSE 2019). Various topics covered include computational fluid dynamics, applications of differential equations in engineering, numerical methods for ODEs and PDEs, mathematical modeling and analysis of biological systems, optimal control and controllability of differential equations, fractional calculus and its applications, nonlinear analysis, and functional analysis. This book will be of interest to researchers, academicians and students in the fields of applied sciences, mathematics and engineering.
This book presents a snapshot of the state-of-art in the field of turbulence modeling, with an emphasis on numerical methods. Topics include direct numerical simulations, large eddy simulations, compressible turbulence, coherent structures, two-phase flow simulation and many more. It includes both theoretical contributions and experimental works, as well as chapters derived from keynote lectures, presented at the fifth Turbulence and Interactions Conference (TI 2018), which was held on June 25-29 in Martinique, France. This multifaceted collection, which reflects the conferences emphasis on the interplay of theory, experiments and computing in the process of understanding and predicting the physics of complex flows and solving related engineering problems, offers a timely guide for students, researchers and professionals in the field of applied computational fluid dynamics, turbulence modeling and related areas.
Gasoline - the most common petroleum product comes in several types or grades. Straight-run gasoline is generated solely by crude oil distillation. Crack gasoline, derived by thermal or catalytic breaking of heavier oil fractions, accounts for the majority of gasoline used in automobile and aviation. Straight-run gasoline, fractured gasoline, reformed and synthetic gasoline, and additives are used to create a wide range of gasoline kinds.
This groundbreaking volume covers the significant advantages of wave technologies in the development of innovative machine building where high technologies with appreciable economic effect are applied. These technologies cover many industries, including the oil-and-gas industry, refining and other chemical processing, petrochemical industry, production of new materials, composite and nano-composites including, construction equipment, environmental protection, pharmacology, power generation, and many others. The technological problem of grinding, fine-scale grinding and activation of solid particles (dry blends) is disclosed. This task is common for the production of new materials across these various industries. At present in this sphere the traditional methods have reached their limits and in some cases are economically ineffective from both scientific and practical points of view. The authors have detailed, through their extensive groundbreaking research, how these new methods, based on wave technology, can be used to create new, more efficient and less expensive applications and materials for industry. From increasing oil recovery to building stronger machines more efficiently and creating more productive membrane separation devices, wave technology can be used as a fertile ground for product innovation and more efficient methods of production across a variety of industries. This book is the only one of its kind in the world and offers a unique and invaluable glance into this sophisticated and complicated scientific area that is only now being more fully utilized for its valuable benefits.
The first monograph to treat topological, group-theoretic, and geometric problems of ideal hydrodynamics and magnetohydrodynamics from a unified point of view. It describes the necessary preliminary notions both in hydrodynamics and pure mathematics with numerous examples and figures. The book is accessible to graduates as well as pure and applied mathematicians working in hydrodynamics, Lie groups, dynamical systems, and differential geometry.
Numerical Modeling of Water Waves, Second Edition covers all aspects of this subject, from the basic fluid dynamics and the simplest models to the latest and most complex, including the first-ever description of techniques for modeling wave generation by explosions, projectile impacts, asteroids, and impact landslides. The book comes packaged with downloadable resources that contain the computer codes and movies generated by the author and his colleagues at the Los Alamos National Laboratory. Mader's three-pronged approach--through text, computer programs, and animations--imparts a thorough understanding of new computational methods and provides the tools to put those methods to effective use. |
![]() ![]() You may like...
The Arnold-Gelfand Mathematical Seminars
V. Arnold, I.M. Gel'fand, …
Hardcover
R4,770
Discovery Miles 47 700
Measures of Noncompactness in Metric…
J. M Ayerbe Toledano, Etc, …
Hardcover
R2,633
Discovery Miles 26 330
The Complex WKB Method for Nonlinear…
Victor P. Maslov
Hardcover
Topological Methods in Data Analysis and…
Valerio Pascucci, Xavier Tricoche, …
Hardcover
R3,070
Discovery Miles 30 700
Lie Theory and Geometry - In Honor of…
Jean-Luc Brylinski, Ranee Brylinski, …
Hardcover
R5,517
Discovery Miles 55 170
Symplectic Geometry and Analytical…
P. Libermann, Charles-Michel Marle
Hardcover
R5,494
Discovery Miles 54 940
Practical Linear Algebra - A Geometry…
Gerald Farin, Dianne Hansford
Hardcover
R2,817
Discovery Miles 28 170
Database Principles - Fundamentals of…
Carlos Coronel, Keeley Crockett, …
Paperback
Bridging Relational and NoSQL Databases
Drazena Gaspar, Ivica Coric
Hardcover
R5,240
Discovery Miles 52 400
|