![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Current research fields in science and technology were presented and discussed at the EKC2008, informing about the interests and directions of the scientists and engineers in EU countries and Korea. The Conference has emerged from the idea of bringing together EU and Korea to get to know each other better, especially in fields of science and technology. The focus of the conference is put on the topics: Computational Fluid Dynamics; Mechatronics and Mechanical Engineering; Information and Communications Technology; Life and Natural Sciences; Energy and Environmental Technology.
This book presents selected peer-reviewed papers presented at the International Conference on Innovative Technologies in Mechanical Engineering (ITME) 2019. The book discusses a wide range of topics in mechanical engineering such as mechanical systems, materials engineering, micro-machining, renewable energy, systems engineering, thermal engineering, additive manufacturing, automotive technologies, rapid prototyping, computer aided design and manufacturing. This book, in addition to assisting students and researchers working in various areas of mechanical engineering, can also be useful to researchers and professionals working in various allied and interdisciplinary fields.
In this authoritative and comprehensive volume, Claude Bardos and Andrei Fursikov have drawn together an impressive array of international contributors to present important recent results and perspectives in this area. The main subjects that appear here relate largely to mathematical aspects of the theory but some novel schemes used in applied mathematics are also presented. Various topics from control theory, including Navier-Stokes equations, are covered.
This book concerns the theoretical foundations of hydro mechanics of Pelton turbines from a viewpoint of engineering. For reference purposes all relevant flow processes and hydraulic aspects in a Pelton turbine have been analyzed completely and systematically. The analyses especially include the quantification of all possible losses existing in the Pelton turbine and the indication of most available potential for further enhancing the system efficiency. As a guideline the book therefore supports further developments of Pelton turbines with regard to their hydraulic designs and optimizations. It is thus suitable for the development and design engineers as well as those working in the field of turbo machinery. Many laws described in the book can also be directly used to simplify aspects of computational fluid dynamics (CFD) or to develop new computational methods. The well-executed examples help better understanding the related flow mechanics.
Recent government and commercial efforts to develop orbital and
suborbital passenger and transport aircraft have resulted in a
burgeoning of new research. The articles in this book, translated
from Russian, were contributed by the world's leading authorities
on supersonic and hypersonic flows and heat transfer. This superb
book addresses the physics and engineering aspects of ultra
high-speed aerodynamic problems. Thorough coverage is given to an
array of specific problem-solving equations.
POLYMER MODELS AND EQUILIBRIUM PROPERTIES. Mechanical Models for Polymer Molecules. Equilibrium Configurations of Polymer Molecules. ELEMENTARY APPROACH TO KINETIC THEORY. Elastic Dumbbell Models. The Rigid Dumbbell and Multibead-Rod Models. The Bead-Spring Chain Models. General Bead-Rod-Spring Models. A GENERAL PHASE-SPACE KINETIC THEORY. Phase-Space Theory of Polymeric Liquids. Phase-Space Theory for Dilute Solutions. Phase-Space Theory for Concentrated Solutions and Melts. ELEMENTARY KINETIC THEORY FOR NETWORK MODELS. Network Theories for Polymer Melts and Concentrated Solutions. APPENDICES. Summary of Continuum Mechanics Notation and Results. Useful Mathematical Formulas. Author Index. Subject Index.
In the tradition of its predecessors, this volume comprises a
selection of the best papers presented at the Ninth International
Symposium on Applications of Laser Techniques to Fluid Mechanics,
held in Lisbon in July 2000.
The interaction of sound waves with the medium through which they
pass can be used to investigate the thermophysical properties of
that medium. With the advent of modern instrumentation, it is now
possible to determine the speed and absorption of sound with
extremely high precision and, through the dependence of those
quantities on variables like temperature, pressure, and frequency
to gain a sensitive measure of one or more properties of fluid.
This has led to renewed interest in such measurements and in the
extraction of thermophysical properties of gases and liquids there
from.
This is an examination of free water hydraulics. The topics covered in this book range from hydrostatic force calculations to the refraction, reflection and diffraction of oscillatory water waves. The author draws a careful distinction between kinematic and dynamic motions - the latter is treated in detail by the method of characteristics, which is regarded as one of the most rigorous approaches to unsteady flow. A special feature is the final chapter in which the author turns to the disruption of free surfaces by air and bubble motion, particularly in pipes.
The book contains high quality papers presented in conference Recent Advances in Mechanical Infrastructure (ICRAM-2019) held at IITRAM, Ahmedabad, India from 20-21 April, 2019.The topics covered in this book are recent advances in thermal infrastructure, manufacturing infrastructure and infrastructure planning and design.
Although the application boundary element method (BEM) has a long history in computational fluid dynamics which dates back to the late 1950s and early 1960s, its developments as a problem-solving tool for general problems of fluid dynamics did not start until recently. Taking as its theme time dependent and time-harmonic problems in engineering, this volume demonstrates that boundary element methods are both elegant and efficient in their application to such problems and therefore worthy of considerable development. The text contains a collection of reviews comprising state-of-the-art applications of BEM to nonlinear problems. Subjects covered include: Helmholtz and Poincare potential-vorticity decompositions for the analysis of unsteady compressible viscous flows; advanced boundary element methods for steady incompressible thermoviscous flow; a time-dependent incompressible viscous BEM for moderate Reynolds numbers; a boundary integral formulation in primitive variables for unsteady viscous flows; Newtonian and non-Newtonian unsteady flow problems; a general theory of unsteady compressible potential flows with applications to airplanes and rotors; recent advances in solution metho
- written by world leading experts in the field - contains many worked-out examples, taken from daily life fire related practical problems - covers the entire range from basics up to state-of-the-art computer simulations of fire and smoke related fluid mechanics aspects, including the effect of water - provides extensive treatment of the interaction of water sprays with a fire-driven flow - contains a chapter on CFD (Computational Fluid Dynamics), the increasingly popular calculation method in the field of fire safety science
This book focuses on hydraulic components and machines, and illustrates how a machine's noise-radiating surfaces affect noise. It reviews the basics and terminology of sound, vibration, vibration isolation, fluid pulsations, Fourier analysis, cavitation, hydraulic shock, and enclosure design.
Fundamental Mechanics of Fluids, Fourth Edition addresses the need for an introductory text that focuses on the basics of fluid mechanics—before concentrating on specialized areas such as ideal-fluid flow and boundary-layer theory. Filling that void for both students and professionals working in different branches of engineering, this versatile instructional resource comprises five flexible, self-contained sections:
The LES-method is rapidly developing in many practical applications in engineering The mathematical background is presented here for the first time in book form by one of the leaders in the field
This book offers comprehensive coverage of compressible flow phenomena and their applications, and is intended for undergraduate/graduate students, practicing professionals, and researchers interested in the topic. Thanks to the clear explanations provided of a wide range of basic principles, the equations and formulas presented here can be understood with only a basic grasp of mathematics. The book particularly focuses on shock waves, offering a unique approach to the derivation of shock wave relations from conservation relations in fluids together with a contact surface, slip line or surface; in addition, the thrust of a rocket engine and that of an air-breathing engine are also formulated. Furthermore, the book covers important fundamentals of various aspects of physical fluid dynamics and engineering, including one-dimensional unsteady flows, and two-dimensional flows, in which oblique shock waves and Prandtl-Meyer expansion can be observed.
This book discusses the pump's role in electrohydraulic systems and its use as a power source to a control loop, and provides a good understanding of the basics, complemented by working knowledge of the "real world." It is intended for engineers and students who have studied feedback control theory.
This book introduces an interesting and alternative way to design absorbing boundary conditions (ABCs) for quantum wave equations, basically the nonlinear Schroedinger equation. The focus of this book is the application of the phase space filter approach to derive accurate radiation conditions for Schroedinger equations. Researchers who are interested in partial differential equations and mathematical physics might find this book appealing.
Fluid Transport: Pipes, part of the Industrial Equipment for Chemical Engineering set, provides a description and calculation of the essential equipment used for fluid transport. Gas-liquid flows are studied with regard to the nature of this type of flow, along with the pressure drop that they may trigger. Many numerical examples are offered, and the calculation of a fluid transport line is detailed. The vacuum technique and the behavior of non-Newtonian liquids is thoroughly presented, and the author also provides the methods needed for understanding the equipment used in applied thermodynamics to encourage students and engineers to self build the programs they need. Chapters are complemented with appendices that provide additional information and associated references.
This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
A thorough understanding of the interaction of waves and currents with offshore structures has now become a vital factor in the safe and economical design of various offshore technologies. There has been a significant increase in the research efforts to meet this need. Although considerable progress has been made in the offshore industry and in the understanding of the interaction of waves, currents, and wind with ocean structures, most of the available books concentrate only on practical applications without a grounding in the physics. This text strives to integrate an understanding of the physics of ocean structure interactions with numerous applications. This more complete understanding will allow the engineer and designer to solve problems heretofore not encountered, and to design new and innovative structures. The intent of this book is to serve the needs of future generations of engineers designing more sophisticated structures at ever increasing depths."
This successful textbook emphasizes the unified nature of all the disciplines of Fluid Mechanics as they emerge from the general principles of continuum mechanics. The different branches of Fluid Mechanics, always originating from simplifying assumptions, are developed according to the basic rule: from the general to the specific. The first part of the book contains a concise but readable introduction into kinematics and the formulation of the laws of mechanics and thermodynamics. The second part consists of the methodical application of these principles to technology. In addition, sections about thin-film flow and flow through porous media are included.
This self-contained, interdisciplinary book encompasses mathematics, physics, computer programming, analytical solutions and numerical modelling, industrial computational fluid dynamics (CFD), academic benchmark problems and engineering applications in conjunction with the research field of anisotropic turbulence. It focuses on theoretical approaches, computational examples and numerical simulations to demonstrate the strength of a new hypothesis and anisotropic turbulence modelling approach for academic benchmark problems and industrially relevant engineering applications. This book contains MATLAB codes, and C programming language based User-Defined Function (UDF) codes which can be compiled in the ANSYS-FLUENT environment. The computer codes help to understand and use efficiently a new concept which can also be implemented in any other software packages. The simulation results are compared to classical analytical solutions and experimental data taken from the literature. A particular attention is paid to how to obtain accurate results within a reasonable computational time for wide range of benchmark problems. The provided examples and programming techniques help graduate and postgraduate students, engineers and researchers to further develop their technical skills and knowledge.
This book focuses on the latest developments in detonation engines for aerospace propulsion, with a focus on the rotating detonation engine (RDE). State-of-the-art research contributions are collected from international leading researchers devoted to the pursuit of controllable detonations for practical detonation propulsion. A system-level design of novel detonation engines, performance analysis, and advanced experimental and numerical methods are covered. In addition, the world's first successful sled demonstration of a rocket rotating detonation engine system and innovations in the development of a kilohertz pulse detonation engine (PDE) system are reported. Readers will obtain, in a straightforward manner, an understanding of the RDE & PDE design, operation and testing approaches, and further specific integration schemes for diverse applications such as rockets for space propulsion and turbojet/ramjet engines for air-breathing propulsion. Detonation Control for Propulsion: Pulse Detonation and Rotating Detonation Engines provides, with its comprehensive coverage from fundamental detonation science to practical research engineering techniques, a wealth of information for scientists in the field of combustion and propulsion. The volume can also serve as a reference text for faculty and graduate students and interested in shock waves, combustion and propulsion.
Basic Helicopter Aerodynamics is widely appreciated as an easily accessible, rounded introduction to the first principles of the aerodynamics of helicopter flight. Simon Newman has brought this third edition completely up to date with a full new set of illustrations and imagery. An accompanying website www.wiley.com/go/seddon contains all the calculation files used in the book, problems, solutions, PPT slides and supporting MATLAB(R) code. Simon Newman addresses the unique considerations applicable to rotor UAVs and MAVs, and coverage of blade dynamics is expanded to include both flapping, lagging and ground resonance. New material is included on blade tip design, flow characteristics surrounding the rotor in forward flight, tail rotors, brown-out, blade sailing and shipborne operations. Concentrating on the well-known Sikorsky configuration of single main rotor with tail rotor, early chapters deal with the aerodynamics of the rotor in hover, vertical flight, forward flight and climb. Analysis of these motions is developed to the stage of obtaining the principal results for thrust, power and associated quantities. Later chapters turn to the characteristics of the overall helicopter, its performance, stability and control, and the important field of aerodynamic research is discussed, with some reference also to aerodynamic design practice. This introductory level treatment to the aerodynamics of helicopter flight will appeal to aircraft design engineers and undergraduate and graduate students in aircraft design, as well as practising engineers looking for an introduction to or refresher course on the subject. |
You may like...
French Connections - Cultural Mobility…
Andrew N. Wegmann, Robert Englebert
Hardcover
R1,308
Discovery Miles 13 080
Integrated Security Technologies and…
Aaron Woland, Vivek Santuka, …
Paperback
Mike Meyers' CompTIA A+ Guide to…
Mike Meyers, Travis Everett, …
Paperback
R1,394
Discovery Miles 13 940
Switching, Routing, and Wireless…
Allan Johnson, Cisco Networking Academy
Paperback
R1,525
Discovery Miles 15 250
|