![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
This practical book provides instruction on how to conduct several "hands-on" experiments for laboratory demonstration in the teaching of heat transfer and fluid dynamics. It is an ideal resource for chemical engineering, mechanical engineering, and engineering technology professors and instructors starting a new laboratory or in need of cost-effective and easy to replicate demonstrations. The book details the equipment required to perform each experiment (much of which is made up of materials readily available is most laboratories), along with the required experimental protocol and safety precautions. Background theory is presented for each experiment, as well as sample data collected by students, and a complete analysis and treatment of the data using correlations from the literature.
This bookis botha course book and a monograph. In fact, it has developed from notes given to graduate course students on materials processing in the years 1989 to 2006. Electromagnetic Processing of Materials (EPM), originatesfroma branchof materials science and engineeringdeveloped in the1980s as a field aiming to create new materials and/or design processes by making use of various functions which appear when applying the electric and magnetic fieldsto materials. It is based on transport phenomena, materials processing and magnetohydrodynamics. The first chapter briefly introduces the history, background and technology of EPM. In the second chapter, the concept of transport phenomena is concisely introduced and in the third chapter the essential part of magnetohydrodynamics is transcribed and readers areshown that the concept of transport phenomenadoes not only applyto heat, mass and momentum, but also magnetic field. The fourth chapter describes electromagnetic processing of electrically conductive materials such as electromagnetic levitation, mixing, brake, and etc., which are caused by the Lorentz force. The fifth chapter treats magnetic processing of organic and non-organic materials such as magnetic levitation, crystal orientation, structural alignment and etc., which are induced by the magnetization force. This part is a new academic field named Magneto-Science, which focuseson the development of super-conducting magnets. This book is written so as to be understood by any graduate student in engineering courses but also to be of interest to engineers and researchers in industries."
This book presents select proceedings of the International Conference on Applied Mathematics in Science and Engineering (AMSE 2019). Various topics covered include computational fluid dynamics, applications of differential equations in engineering, numerical methods for ODEs and PDEs, mathematical modeling and analysis of biological systems, optimal control and controllability of differential equations, fractional calculus and its applications, nonlinear analysis, and functional analysis. This book will be of interest to researchers, academicians and students in the fields of applied sciences, mathematics and engineering.
This first volume discusses fluid mechanical concepts and their applications to ideal and viscous processes. It describes the fundamental hydrostatics and hydrodynamics, and includes an almanac of flow problems for ideal fluids. The book presents numerous exact solutions of flows in simple configurations, each of which is constructed and graphically supported. It addresses ideal, potential, Newtonian and non-Newtonian fluids. Simple, yet precise solutions to special flows are also constructed, namely Blasius boundary layer flows, matched asymptotics of the Navier-Stokes equations, global laws of steady and unsteady boundary layer flows and laminar and turbulent pipe flows. Moreover, the well-established logarithmic velocity profile is criticised.
This revised text covers the fundamentals of thermodynamics required to understand electrical power generation systems and the application of these principles to nuclear reactor power plant systems. The book begins with fundamental definitions of units and dimensions, thermodynamic variables and the Laws of Thermodynamics progressing to sections on specific applications of the Brayton and Rankine cycles for power generation and projected reactor systems design issues. It is not a traditional general thermodynamics text, per se, but a practical thermodynamics volume intended to explain the fundamentals and apply them to the challenges facing actual nuclear power plants systems, where thermal hydraulics comes to play. There have been significant new findings for intercooled systems since the previous edition published and they will be included in this volume. New technology plans for using a Nuclear Air-Brayton as a storage system for a low carbon grid are presented along with updated component sizes and performance criteria for Small Modular Reactors. Written in a lucid, straight-forward style while retaining scientific rigor, the content is accessible to upper division undergraduate students and aimed at practicing engineers in nuclear power facilities and engineering scientists and technicians in industry, academic research groups, and national laboratories. The book is also a valuable resource for students and faculty in various engineering programs concerned with nuclear reactors.
This book provides an analysis of contemporary problems in combustion science, namely flame propagation, detonation and heterophaseous combustion based on the works of the author. The current problems in the area of gas combustion, as well as the methods allowing to calculate and estimate limiting conditions of ignition, and flame propagation on the basis of experimental results are considered. The book focuses on the virtually inaccessible works of Russian authors and will be useful for experienced students and qualified scientists in the area of experimental studies of combustion processes.
Schlieren and shadowgraph techniques are basic and valuable tools in various scientific and engineering disciplines. They allow us to see the invisible: the optical inhomogeneities in transparent media like air, water, and glass that otherwise cause only ghostly distortions of our normal vision.These techniques are discussed briefly in many books and papers, but there is no up-to-date complete treatment of the subject before now. The book is intended as a practical guide for those who want to use these methods, as well as a resource for a broad range of disciplines where scientific visualization is important. The colorful 400-year history of these methods is covered in an extensive introductory chapter accessible to all readers.
Despite generations of change and recent, rapid developments in gas dynamics and hypersonic theory, relevant literature has yet to catch up, so those in the field are generally forced to rely on dated monographs to make educated decisions that reflect present-day science. Written by preeminent Russian aerospace researcher Vladimir V. Lunev, Real Gas Flows with High Velocities reflects the most current concepts of high-velocity gas dynamics. For those in aviation and aerospace, this is a vital methodical revitalization and reassessment of real gas flows with regard to the physical and gasdynamic effects related to high-velocity flight, and, in particular, the entry of bodies into the atmosphere of Earth and other planets. Much more than just a manual on gas physics, this book: Analyzes fundamental challenges associated with super- and subsonic flight Describes the physical properties of gas mixtures and their associated high-temperature processes from the phenomenological standpoint Explores use of computational mathematics and equipment to simplify previously unsolvable problems of inviscid and viscous gas dynamics Explains why numerical methods remain inferior to analytical methods for creating a conceptual understanding of gas dynamic and other physical problems Avoiding older, cumbersome approximate methods, this reference outlines the general patterns and features of typical flows and how real gas affects them. Referencing simple, analytically treatable examples, similarity laws, and asymptotic analysis, the author omits superfluous explanation of reasoning. This valuable reference summarizes general theory of super- and subsonic flow and uses practical problems to develop a solid understanding of modern real-gas flows and high-velocity gas dynamics.
Discusses the modeling and analysis of nanoparticles. Covers all fundamental aspects of particle and droplet flows. Includes heat and mass transfer processes. Features new and updated sections throughout the text. Includes chapter exercises.
Applied Hydraulic Transients, 3rd Edition covers hydraulic transients in a comprehensive and systematic manner from introduction to advanced level and presents various methods of analysis for computer solution. The book is suitable as a textbook for senior-level undergraduate and graduate students as well as a reference for practicing engineers and researchers. The field of application of the book is very broad and diverse and covers areas such as hydroelectric projects, pumped storage schemes, water-supply systems, cooling-water systems, oil pipelines and industrial piping systems. A strong emphasis is given to practical applications: several case studies, problems of applied nature, and design criteria are included. This will help the design engineers and introduce the students to real-life projects. Up-to-date references are included at the end of each chapter.
Modern Flexible Multi-Body Dynamics Modeling Methodology for Flapping Wing Vehicles presents research on the implementation of a flexible multi-body dynamic representation of a flapping wing ornithopter that considers aero-elasticity. This effort brings advances in the understanding of flapping wing flight physics and dynamics that ultimately leads to an improvement in the performance of such flight vehicles, thus reaching their high performance potential. In using this model, it is necessary to reduce body accelerations and forces of an ornithopter vehicle, as well as to improve the aerodynamic performance and enhance flight kinematics and forces which are the design optimization objectives. This book is a useful reference for postgraduates in mechanical engineering and related areas, as well as researchers in the field of multibody dynamics.
This book is dedicated to the general study of fluid structure interaction with consideration of uncertainties. The fluid-structure interaction is the study of the behavior of a solid in contact with a fluid, the response can be strongly affected by the action of the fluid. These phenomena are common and are sometimes the cause of the operation of certain systems, or otherwise manifest malfunction. The vibrations affect the integrity of structures and must be predicted to prevent accelerated wear of the system by material fatigue or even its destruction when the vibrations exceed a certain threshold.
This book covers topics on engineering science, technology and applications of the classification of particles in liquids suspensions in hydrocyclones. It is divided into 12 chapters starting with the introduction of the hydrocyclone to the mining industry and its several applications of classification, followed by the fundamentals of classification. A special chapter on the fundamentals of sedimentation as the mechanism of the hydrocyclone classification is given. The authors also cover the fundamentals hydrodynamics of solid-fluid interaction with application to the fluids and suspensions flow of in circular pipelines and discusses the flow pattern in hydrocyclones from a fluid dynamics point of view. The physical design, the empirical, phenomenological and numerical hydrocyclone models are presented. The two last chapters deal with the applications of hydrocyclones system design and instrumentation study cases of application in hydrocyclones to the mining industry. Several parts of this book are the result of the work of their research and professional groups from the university and industry.
Compared to the traditional modeling of computational fluid dynamics, direct numerical simulation (DNS) and large-eddy simulation (LES) provide a very detailed solution of the flow field by offering enhanced capability in predicting the unsteady features of the flow field. In many cases, DNS can obtain results that are impossible using any other means while LES can be employed as an advanced tool for practical applications. Focusing on the numerical needs arising from the applications of DNS and LES, Numerical Techniques for Direct and Large-Eddy Simulations covers basic techniques for DNS and LES that can be applied to practical problems of flow, turbulence, and combustion. After introducing Navier-Stokes equations and the methodologies of DNS and LES, the book discusses boundary conditions for DNS and LES, along with time integration methods. It then describes the numerical techniques used in the DNS of incompressible and compressible flows. The book also presents LES techniques for simulating incompressible and compressible flows. The final chapter explores current challenges in DNS and LES. Helping readers understand the vast amount of literature in the field, this book explains how to apply relevant numerical techniques for practical computational fluid dynamics simulations and implement these methods in fluid dynamics computer programs.
A fully comprehensive guide to thermal systems design covering fluid dynamics, thermodynamics, heat transfer and thermodynamic power cycles Bridging the gap between the fundamental concepts of fluid mechanics, heat transfer and thermodynamics, and the practical design of thermo-fluids components and systems, this textbook focuses on the design of internal fluid flow systems, coiled heat exchangers and performance analysis of power plant systems. The topics are arranged so that each builds upon the previous chapter to convey to the reader that topics are not stand-alone items during the design process, and that they all must come together to produce a successful design. Because the complete design or modification of modern equipment and systems requires knowledge of current industry practices, the authors highlight the use of manufacturer s catalogs to select equipment, and practical examples are included throughout to give readers an exhaustive illustration of the fundamental aspects of the design process. Key Features: * Demonstrates how industrial equipment and systems are designed, covering the underlying theory and practical application of thermo-fluid system design * Practical rules-of-thumb are included in the text as Practical Notes to underline their importance in current practice and provide additional information * Includes an instructor s manual hosted on the book s companion website
This title is based on the workshop on Transport Properties &
Concrete Quality, held at the campus of Arizona State University on
October 10-12, 2005.
A defining feature of nonlinear hyperbolic equations is the occurrence of shock waves. While the popular shock-capturing methods are easy to implement, shock-fitting techniques provide the most accurate results. A Shock-Fitting Primer presents the proper numerical treatment of shock waves and other discontinuities. The book begins by recounting the events that lead to our understanding of the theory of shock waves and the early developments related to their computation. After presenting the main shock-fitting ideas in the context of a simple scalar equation, the author applies Colombeau's theory of generalized functions to the Euler equations to demonstrate how the theory recovers well-known results and to provide an in-depth understanding of the nature of jump conditions. He then extends the shock-fitting concepts previously discussed to the one-dimensional and quasi-one-dimensional Euler equations as well as two-dimensional flows. The final chapter explores existing and future developments in shock-fitting methods within the framework of unstructured grid methods. Throughout the text, the techniques developed are illustrated with numerous examples of varying complexity. On the accompanying downloadable resources, MATLAB (R) codes serve as concrete examples of how to implement the ideas discussed in the book.
Stabilization of Navier Stokes Flows presents recent notable progress in the mathematical theory of stabilization of Newtonian fluid flows. Finite-dimensional feedback controllers are used to stabilize exponentially the equilibrium solutions of Navier Stokes equations, reducing or eliminating turbulence. Stochastic stabilization and robustness of stabilizable feedback are also discussed. The analysis developed here provides a rigorous pattern for the design of efficient stabilizable feedback controllers to meet the needs of practical problems and the conceptual controllers actually detailed will render the reader 's task of application easier still.Stabilization of Navier Stokes Flows avoids the tedious and technical details often present in mathematical treatments of control and Navier Stokes equations and will appeal to a sizeable audience of researchers and graduate students interested in the mathematics of flow and turbulence control and in Navier-Stokes equations in particular.
This book explores computational fluid dynamics in the context of the human nose, allowing readers to gain a better understanding of its anatomy and physiology and integrates recent advances in clinical rhinology, otolaryngology and respiratory physiology research. It focuses on advanced research topics, such as virtual surgery, AI-assisted clinical applications and therapy, as well as the latest computational modeling techniques, controversies, challenges and future directions in simulation using CFD software. Presenting perspectives and insights from computational experts and clinical specialists (ENT) combined with technical details of the computational modeling techniques from engineers, this unique reference book will give direction to and inspire future research in this emerging field.
Detailing the major developments of the last decade, the Handbook of Hydraulic Fluid Technology, Second Edition updates the original and remains the most comprehensive and authoritative book on the subject. With all chapters either revised (in some cases, completely) or expanded to account for new developments, this book sets itself apart by approaching hydraulic fluids as a component of a system and focusing on key technological aspects. Written by experts from around the world, the handbook covers all major classes of hydraulic fluids in detail, delving into chemistry, design, fluid maintenance and selection, and other key concepts. It also offers a rigorous overview of hydraulic fluid technology and evaluates the ecological benefits of water and its use as an important alternative technology. This complete overview discusses pumps and motors, valves, and reservoir design, as well as fluid properties and associated topics. These include air entrainment, modulus, lubrication and wear assessment by bench and pump testing, biodegradability, and fire resistance. Contributors also present particularly important material on biodegradable fluids and the use of water as a hydraulic fluid. As the foremost resource on the design, selection, and testing of hydraulic systems and fluids used in engineering applications, this book contains new illustrations, data tables, and practical examples, all updated with essential information on the latest methods. To streamline presentation, relevant content from the first edition has been integrated into this new version, where appropriate. The result is a reference that helps readers develop an unparalleled understanding of the total hydraulic system, including essential hardware, fluid properties, and hydraulic lubricants.
Fluid power systems are manufactured by many organizations for a very wide range of applications, embodying different arrangements of components to fulfill a given task. Hydraulic components are manufactured to provide the control functions required for the operation of a wide range of systems and applications. This second edition is structured to give an understanding of: - Basic types of components, their operational principles and the estimation of their performance in a variety of applications. - A resume of the flow processes that occur in hydraulic components. - A review of the modeling process for the efficiency of pumps and motors. This new edition also includes a complete analysis for estimating the mechanical loss in a typical hydraulic motor; how circuits can be arranged using available components to provide a range of functional system outputs, including the analysis and design of closed loop control systems and some applications; a description of the use of international standards in the design and management of hydraulic systems; and extensive analysis of hydraulic circuits for different types of hydrostatic power transmission systems and their application.
This contributed volume celebrates the work of Tayfun E. Tezduyar on the occasion of his 60th birthday. The articles it contains were born out of the Advances in Computational Fluid-Structure Interaction and Flow Simulation (AFSI 2014) conference, also dedicated to Prof. Tezduyar and held at Waseda University in Tokyo, Japan on March 19-21, 2014. The contributing authors represent a group of international experts in the field who discuss recent trends and new directions in computational fluid dynamics (CFD) and fluid-structure interaction (FSI). Organized into seven distinct parts arranged by thematic topics, the papers included cover basic methods and applications of CFD, flows with moving boundaries and interfaces, phase-field modeling, computer science and high-performance computing (HPC) aspects of flow simulation, mathematical methods, biomedical applications, and FSI. Researchers, practitioners, and advanced graduate students working on CFD, FSI, and related topics will find this collection to be a definitive and valuable resource.
As we approach the 21st century, there is a discernable shift in policing, from an incident-driven perspective to a proactive problem solving stance often described as "community policing." In this volume a panel of 21 psychologists examine the changing directions in policing and how such changes impact on psychological service delivery and operational support to law enforcement agencies. The book describes existing and emerging means of providing psychological support to the law enforcement community in response to police needs to accommodate new technology, community-oriented problem solving technology, crime prevention, and sensitivity to community social changes. Senior psychologists who are sworn officers, federal agents and civilian employees of federal, state and local law enforcement agencies comprise the team of chapter authors. Their perspectives encompass their collective experience "in the trenches" and in law enforcement management and administrative support roles. They discuss traditional applications of psychology to police selection, training and promotion processes, and in trauma stress management and evaluation of fitness for duty. Concerns related to police diversity and police family issues are also addressed, as are unique aspects of police stress management. Additional chapters are dedicated to establishing psychological service functions that currently are less familiar to police agencies than they are to other government and private sector service recipients. These chapters are devoted to police psychologists as human resource professionals, as human factors experts in accommodating to new technology and to new legal requirements, as organizational behavioral experts, and as strategic planners. This text is recommended reading for two groups: *police and public safety administators whose work takes them--or should take them--into contact with police psychologists; *practicing and would-be police psychologists concerned with the emerging trends in the application of psychology to police and other public safety programs.
This series of books forms a unique and rigorous treatise on various mathematical aspects of fluid mechanics models. These models consist of systems of nonlinear partial differential equations such as the incompressible and compressible NavierStokes equations. The main emphasis in the first volume is on the mathematical analysis of incompressible models. The second volume is an attempt to achieve a mathematical understanding of compressible Navier-Stokes equations. It is probably the first reference covering the issue of global solutions in the large. It includes entirely new material on compactness properties of solutions for the Cauchy problem, the existence and regularity of stationary solutions, and the existence of global weak solutions. Written by one of the world's leading researchers in nonlinear partial differential equations, Mathematical Topics in Fluid Mechanics will be an indispensable reference for every serious researcher in the field. Its topicality and the clear, concise, and deep presentation by the author make it an outstanding contribution to the great theoretical problems in science concerning rigorous mathematical modelling of physical phenomena. Pierre-Louis Lions is Professor of Mathematics at the University Paris-Dauphine and of Applied Mathematics at the Ecole Polytechnique.
This book presents methodologies for analysing large data sets produced by the direct numerical simulation (DNS) of turbulence and combustion. It describes the development of models that can be used to analyse large eddy simulations, and highlights both the most common techniques and newly emerging ones. The chapters, written by internationally respected experts, invite readers to consider DNS of turbulence and combustion from a formal, data-driven standpoint, rather than one led by experience and intuition. This perspective allows readers to recognise the shortcomings of existing models, with the ultimate goal of quantifying and reducing model-based uncertainty. In addition, recent advances in machine learning and statistical inferences offer new insights on the interpretation of DNS data. The book will especially benefit graduate-level students and researchers in mechanical and aerospace engineering, e.g. those with an interest in general fluid mechanics, applied mathematics, and the environmental and atmospheric sciences. |
You may like...
Turbulence in Porous Media - Modeling…
Marcelo J. S. de Lemos
Hardcover
R3,974
Discovery Miles 39 740
Know and Understand Centrifugal Pumps
L. Bachus, A. Custodio
Hardcover
R2,361
Discovery Miles 23 610
Compressibility, Turbulence and High…
Thomas B. Gatski, Jean-Paul Bonnet
Hardcover
R2,266
Discovery Miles 22 660
Modeling Approaches and Computational…
Shankar Subramaniam, S. Balachandar
Paperback
R3,925
Discovery Miles 39 250
|