![]() |
![]() |
Your cart is empty |
||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
A classic from 1965, this book covers the main aspects of the theory of quantum liquids, including the elementary excitation spectrum, hydrodynamics, and kinetic phenomena. The book requires no special training and assumes only general knowledge of the fundamentals of theoretical physics. It was developed from studies at the Institute of Physical Problems of the U.S.S.R. Academy of Sciences and can be used as a guide for professors teaching quantum liquid theory or as a text for graduate students.
This definitive text describes the theory and design both of Air
Cushion Vehicles (ACV) and Surface Effect Ships (SES). It begins by
introducing hovercraft types and their development and application
throughout the world in the last three decades, before going on to
discuss the theoretical aspects of ACV and SES craft covering their
hovering performance, dynamic trim over calm water, resistance,
stability, manoeuvrability, skirt configuration and analysis of
forces acting on the skirts, ACV and SES seakeeping, and the
methodology of scaling aerodynamic and hydrodynamic forces acting
on the ACV/SES from model test data.
Adopts a completely original approach to the study of processes of
mass transfer. In contrast to the usual approach, based on the
concept of continuum media and the theory of heat and mass
transfer, the topic is considered from a new viewpoint, taking into
account the heterogeneous dispersal state of porous bodies. The
author bases his discussion on the theory of surface forces and
microhydrodynamic analysis of the processes of mass transport of
gases, liquids and vapors, providing the reader with a systematic
account of liquid/solid and gas/solid interfaces.
Airflow examines and describes the many ways in which modellers and practitioners of a wide range of hobbies and sports (even cricket!) can understand and confront, harness and exploit the physical properties of wind and air. The book's admirable breadth and depth offers something not only for students of many science and technical subjects, but also to the hobbyists and disciples of 'alternative energy'. The book will be of particular interest to the increasing number of people who are hooked on the thrill and excitement of sports such as yachting, aeromodelling, ballooning, car racing, parachuting, kite flying, boomerang throwing, hang gliding, soaring in sailplanes and power flying.
Accuracy in the laboratory setting is key to maintaining the integrity of scientific research. Inaccurate measurements create false and non-reproducible results, rendering an experiment or series of experiments invalid and wasting both time and money. This handy guide to solid, fluid, and thermal measurement helps minimize this pitfall through careful detailing of measurement techniques. Concise yet thorough, Mechanical Variables Measurement-Solid, Fluid, and Thermal describes the use of instruments and methods for practical measurements required in engineering, physics, chemistry, and the life sciences. Organized according to measurement problem, the entries are easy to access. The articles provide equations to assist engineers and scientists who seek to discover applications and solve problems that arise in areas outside of their specialty. Sections include references to more specialized publications for advanced techniques, as well. It offers instruction for a range of measuring techniques, basic through advanced, that apply to a broad base of disciplines. As an engineer, scientist, designer, manager, researcher, or student, you encounter the problem of measurement often and realize that doing it correctly is pivotal to the success of an experiment. This is the first place to turn when deciding on, performing, and troubleshooting the measurement process. Mechanical Variables Measurement-Solid, Fluid, and Thermal leads the reader, step-by-step, through the straits of experimentation to triumph.
With the appearance and fast evolution of high performance
materials, mechanical, chemical and process engineers cannot
perform effectively without fluid processing knowledge. The purpose
of this book is to explore the systematic application of basic
engineering principles to fluid flows that may occur in fluid
processing and related activities.
Lattice Boltzmann method (LBM) is a relatively new simulation technique for the modeling of complex fluid systems and has attracted interest from researchers in computational physics. Unlike the traditional CFD methods, which solve the conservation equations of macroscopic properties (i.e., mass, momentum, and energy) numerically, LBM models the fluid consisting of fictive particles, and such particles perform consecutive propagation and collision processes over a discrete lattice mesh. This book will cover the fundamental and practical application of LBM. The first part of the book consists of three chapters starting form the theory of LBM, basic models, initial and boundary conditions, theoretical analysis, to improved models. The second part of the book consists of six chapters, address applications of LBM in various aspects of computational fluid dynamic engineering, covering areas, such as thermo-hydrodynamics, compressible flows, multicomponent/multiphase flows, microscale flows, flows in porous media, turbulent flows, and suspensions. With these coverage LBM, the book intended to promote its applications, instead of the traditional computational fluid dynamic method.
Hamiltonian fluid dynamics and stability theory work hand-in-hand in a variety of engineering, physics, and physical science fields. Until now, however, no single reference addressed and provided background in both of these closely linked subjects. Introduction to Hamiltonian Fluid Dynamics and Stability Theory does just that-offers a comprehensive introduction to Hamiltonian fluid dynamics and describes aspects of hydrodynamic stability theory within the context of the Hamiltonian formalism. The author uses the example of the nonlinear pendulum-giving a thorough linear and nonlinear stability analysis of its equilibrium solutions-to introduce many of the ideas associated with the mathematical argument required in infinite dimensional Hamiltonian theory needed for fluid mechanics. He examines Andrews' Theorem, derives and develops the Charney-Hasegawa-Mima (CMH) equation, presents an account of the Hamiltonian structure of the Korteweg-de Vries (KdV) equation, and discusses the stability theory associated with the KdV soliton. The book's tutorial approach and plentiful exercises combine with its thorough presentations of both subjects to make Introduction to Hamiltonian Fluid Dynamics and Stability Theory an ideal reference, self-study text, and upper level course book.
This book offers an essential introduction to the linear and non-linear behavior of solid materials, and to the concepts of deformation, displacement and stress, within the context of continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of solid mechanics, experimental methods, classes of material behaviors, and the thermodynamic modeling framework. It then explores linear elastic behavior, thermoelasticity, plasticity, viscoplasticity, fracture mechanics and damage behavior. The last part of the book is devoted to conventional and magnetic shape memory alloys, which may be used as actuators or sensors in adaptive structures. Given its range of coverage, the book will be especially valuable for students of engineering courses in Mechanics. Further, it includes a wealth of examples and exercises, making it accessible to the widest possible audience.
Since Prandtl first suggested it in 1904, boundary layer theory has become a fundamental aspect of fluid dynamics. Although a vast literature exists for theoretical and experimental aspects of the theory, for the most part, mathematical studies can be found only in separate, scattered articles. Mathematical Models in Boundary Layer Theory offers the first systematic exposition of the mathematical methods and main results of the theory. Beginning with the basics, the authors detail the techniques and results that reveal the nature of the equations that govern the flow within boundary layers and ultimately describe the laws underlying the motion of fluids with small viscosity. They investigate the questions of existence and uniqueness of solutions, the stability of solutions with respect to perturbations, and the qualitative behavior of solutions and their asymptotics. Of particular importance for applications, they present methods for an approximate solution of the Prandtl system and a subsequent evaluation of the rate of convergence of the approximations to the exact solution. Written by the world's foremost experts on the subject, Mathematical Models in Boundary Layer Theory provides the opportunity to explore its mathematical studies and their importance to the nonlinear theory of viscous and electrically conducting flows, the theory of heat and mass transfer, and the dynamics of reactive and muliphase media. With the theory's importance to a wide variety of applications, applied mathematicians-especially those in fluid dynamics-along with engineers of aeronautical and ship design will undoubtedly welcome this authoritative, state-of-the-art treatise.
This book contains the papers presented at the Parallel
Computational Fluid Dynamics 1998 Conference.
Computational Fluid-Structure Interaction: Methods, Models, and Applications provides detailed explanations of a range of FSI models, their mathematical formulations, validations, and applications, with an emphasis on conservative unstructured-grid FVM. The first part of the book presents the nascent numerical methods, algorithms and solvers for both compressible and incompressible flows, computational structural dynamics (CSD), parallel multigrid, IOM, IMM and ALE methods. The second half covers the validations of these numerical methods and solvers, as well as their applications in a broad range of areas in basic research and engineering.
This book covers aspects of multiphase flow and heat transfer during phase change processes, focusing on boiling and condensation in microscale channels. The authors present up-to-date predictive methods for flow pattern, void fraction, pressure drop, heat transfer coefficient and critical heat flux, pointing out the range of operational conditions that each method is valid. The first four chapters are dedicated on the motivation to study multiphase flow and heat transfer during phase change process, and the three last chapters are focused on the analysis of heat transfer process during boiling and condensation. During the description of the models and predictive methods, the trends are discussed and compared with experimental findings.
The science of rheology remains a mystery to most people, even to some scientists. Some respectable dictionaries have been quite cavalier in their attitude to the science, the small Collins Gem dictionary, for example, being quite happy to inform us that a Rhea is an three-toed South American ostrich, whilst at the same time offering no definition of rheology. This maybe due to the fact that the science is interdisciplinary and does not fit well into any one of the historical disciplines. This book contains an in-depth study of the history of rheology, beginning with the statements of Heraclitus, Confucius and the prophetess Deborah. It also emphasises the distinctive contributions of Newton, Hooke, Boltzmann, Maxwell, Kelvin and others, and culminates in the flourishing activity in the second half of this century. Features of this book: Is the only book on the subject Prevents the rediscovery of results already made Will educate newcomers to the field to the rich heritage in even a relatively recent science like rheology. The book will be invaluable for science and scientific history libraries and will also be of interest to rheologists, and scientists working in the polymer processing, food, lubrication, detergent and similar industries."
Rheology Principles, Measurements, and Applications Christopher W. Macosko If you use rheological measurements to characterize new materials, analyze non-Newtonian flow problems, or design plastic parts, or if you would like to use rheology to overcome a particular problem, this volume will prove invaluable to your research. Rheology: Principles, Measurements, and Applications presents an extremely practical, timely, and accessible three-dimensional account of the subject. It has been specifically designed to enable researchers to understand and apply information from the latest rheological literature to their own operations. Worked examples and exercises with solutions make it ideal for self-study. This book covers the essential criteria for selecting the best test types for various applications, accurately interpreting results, and determining other areas where rheology and rheological phenomena may be useful in your work. Section one develops important constitutive equations using simple deformations; section two explores shear and extensional rheometers, techniques for measuring material functions, and optical methods in rheology; and section three discusses applications of rheology to polymeric liquid and dispersions. Rheology: Principles, Measurements, and Applications will be of greatest interest to chemical engineers, chemists, polymer scientists, and mechanical engineers, as well as students in these and related fields.
Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow and transport in rivers, estuaries, lakes, groundwater and the atmosphere; it is a topic of increasing importance for decision makers, engineers, and researchers alike. The second edition of the successful textbook "Fluid Mechanics of Environmental Interfaces" is still aimed at providing a comprehensive overview of fluid mechanical processes occurring at the different interfaces existing in the realm of EFM, such as the air-water interface, the air-land interface, the water-sediment interface, the surface water-groundwater interface, the water-vegetation interface, and the water-biological systems interface. Across any of these interfaces mass, momentum, and heat are exchanged through different fluid mechanical processes over various spatial and temporal scales. In this second edition, the unique feature of this book, considering all the topics from the point of view of the concept of environmental interface, was maintained while the chapters were updated and five new chapters have been added to significantly enlarge the coverage of the subject area. The book starts with a chapter introducing the concept of EFM and its scope, scales, processes and systems. Then, the book is structured in three parts with fifteen chapters. Part one, which is composed of four chapters, covers the processes occurring at the interfaces between the atmosphere and the surface of the land and the seas, including the transport of dust and the dispersion of passive substances within the atmosphere. Part two deals in five chapters with the fluid mechanics at the air-water interface at small scales and sediment-water interface, including the advective diffusion of air bubbles, the hyporheic exchange and the tidal bores. Finally, part three discusses in six chapters the processes at the interfaces between fluids and biotic systems, such as transport processes in the soil-vegetation-lower atmosphere system, turbulence and wind above and within the forest canopy, flow and mass transport in vegetated open channels, transport processes to and from benthic plants and animals and coupling between interacting environmental interfaces. Each chapter has an educational part, which is structured in four sections: a synopsis of the chapter, a list of keywords that the reader should have encountered in the chapter, a list of questions and a list of unsolved problems related to the topics covered by the chapter. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics, atmospheric science, meteorology, limnology, oceanography, and applied mathematics.
The Second International Computational Wind Engineering Symposium was held in Colorado, USA during August 1996 and presented papers on the popular application of CFD concepts. These proceedings contain a set of invited papers providing state-of-the-art reviews on subjects such as CFD turbulence models, bluff body aerodynamics, terrain aerodynamics and building aerodynamics. Individual session papers reflect on recent methodologies and innovations on CFD techniques applied to flow about bluff bodies immersed in shear layers, bridge aerodynamics, air pollution aerodynamics, mesoscale predictions of flow over complex terrain and the application of advanced numerical method strategies to these topics.
This book offers timely insights into research on numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications. It reports on findings by members of the STAB (German Aerospace Aerodynamics Association) and DGLR (German Society for Aeronautics and Astronautics) and covers both nationally and EC-funded projects. Continuing on the tradition of the previous volumes, the book highlights innovative solutions, promoting translation from fundamental research to industrial applications. It addresses academics and professionals in the field of aeronautics, astronautics, ground transportation, and energy alike.
Emphasis of this text is on the basic assumptions and the formulation of the theory of compressible flow as well as on the methods of solving problems. Published by Science Press, Beijing, distributed by VNR in the US. Annotation copyright Book News, Inc. Portland, Or.
This unique single-source reference-the first book of its kind to
address systematically the problems involved in the field-offers
comprehensive coverage of hydraulic system troubleshooting and
encourages change in the trial-and-error methods common in
rectifying problems and restoring system downtime, furnishing a new
paradigm for troubleshooting methodology.
C Specific heat at constant pressure p D Displacement field D Diffusion coefficient d D Orifice diameter E Electric field E Electron charge F Force G Acceleration due to gravity I Current J Current flux K Conductivity k Boltzmann constant B L Atomizer geometry: length from electrode tip to orifice plane i L Atomizer geometry : length of orifice channel o P Polarization Q Flow rate/Heat flux Q Charge r Atomizer geometry : electrode tip radius p T Time T Temperature U Velocity V Voltage W Energy X Distance Nomenclature (Greek) Thermal expansion coefficient ? Permittivity ? Permutation operator ? ijk Ion mobility ? VI Nomenclature Debye length ? D ? Dynamic viscosity ? Mass density Surface tension ? T Electrical conductivity ? ? Timescale ? Vorticity Nomenclature (Subscripts) Reference state ? o Cartesian tensor notation ? ijk Volume density (? per unit volume) ? v Surface density (? per unit area) ? s Linear density (? per unit length) ? l 'critical' state ? c Bulk mean injection ? inj Nomenclature (Superscripts) Time or ensemble averaged ? Contents Contents 1 Introduction................................................................... 1 1.1 Introduction and Scope.................................................. 1 1.2 Organization.............................................................. 3 2 Electrostatics, Electrohydrodynamic Flow, Coupling and Instability.................................................................. 5 2.1 Electrostatics.............................................................. 5 2.1.1 The Coulomb Force............................................. 5 2.1.2 Permittivity...................................................... 6 2.1.3 Conductors, Insulators, Dielectrics and Polarization........ 6 2.1.4 Gauss's Law...................................................... 8 2.2 Mobility and Charge Transport........................................ 10 2.2.1 Introduction...................................................... 10
The book explores the theoretical background of one of the most widespread activities in hydrocarbon wells, that of hydraulic fracturing. A comprehensive treatment of the basic phenomena includes: linear elasticity, stresses, fracture geometry and rheology. The diverse concepts of mechanics are integrated into a coherent description of hydraulic fracture propagation. The chapters in the book are cross-referenced throughout and the connections between the various phenomena are emphasized. The book offers readers a unique approach to the subject with the use of many numerical examples.
This festschrift in honor of Professor Budugur Lakshminarayana's
60th birthday-based on the proceedings of a symposium on
Turbomachinery Fluid Dynamics and Heat Transfer held recently at
The Pennsylvania State University, University Park-provides
authoritative and conclusive research results as well as new
insights into complex flow features found in the turbomachinery
used for propulsion, power, and industrial applications.
Because of its ability to treat both regions with irregular boundaries and with different material types, the finite element method is increasingly being applied to surface water and soil transport problems and this is the focus of the present volume. The method is ideally suited to simulation of complex real applications for resolving environmental issues and for conducting environmental impact studies. The present volume focuses on the two main areas of environmental modeling with finite elements and the supporting finite element methodology. Five chapters are devoted to ocean and coastal engineering, one to other surface water problems, several to ground water modeling and contaminant transport, including radioactive waste, and the remainder to mathematical models, particularly for mixed finite elements and nonlinear problems. Environmental problems are of increasing topicality and importance today. Special care has been taken in organizing and editing the material to form the right combination of modeling, methodology, and applications studies to form a cohesive treatment appropriate for a graduate course or seminar on the subject. It is aimed in particular at engineers working in computational environmental fluid mechanics and transport processes. |
![]() ![]() You may like...
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Computational Fluid Dynamics in Fire…
Guan Heng Yeoh, Kwok Kit Yuen
Hardcover
The Finite Element Method for Fluid…
Olek C. Zienkiewicz, R.L. Taylor, …
Hardcover
Turbulence in Porous Media - Modeling…
Marcelo J. S. de Lemos
Hardcover
R4,222
Discovery Miles 42 220
|