Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
In the recent decades, efficiency enhancement of refineries and chemical plants has been become a focus of research and development groups. Use of nanofluids in absorption, regeneration, liquid-liquid extraction and membrane processes can lead to mass transfer and heat transfer enhancement in processes which results in an increased efficiency in all these processes. Nanofluids and Mass Transfer introduces the role of nanofluids in improving mass transfer phenomena and expressing their characteristics and properties. The book also covers the theory and modelling procedures in details and finally illustrates various applications of Nanofluids in mass transfer enhancement in various processes such as absorption, regeneration, liquid-liquid extraction and membrane processes and how can nanofluids increase mass transfer in processes.
Computational fluid dynamics (CFD), which involves using computers to simulate fluid flow, is emerging as a powerful approach for elucidating the palaeobiology of ancient organisms. Here, Imran A. Rahman describes its applications for studying fossil echinoderms. When properly configured, CFD simulations can be used to test functional hypotheses in extinct species, informing on aspects such as feeding and stability. They also show great promise for addressing ecological questions related to the interaction between organisms and their environment. CFD has the potential to become an important tool in echinoderm palaeobiology over the coming years.
Reviewing basic fluid power principles, this updated Second Edition presents practical methods for detecting, diagnosing, and correcting fluid power problems within a system-detailing the design, maintenance, and troubleshooting of pneumatic, hydraulic, and electrical systems and components. Examines the root causes of failures in items such as hydraulic pumps and motors, air motors, hydraulic and pneumatic valves, compressors, accumulators, filters, seals, cylinders, tubing, fittings, and hoses Fully revised and expanded throughout, Fluid Power Troubleshooting, Second Edition stresses the latest developments in understanding the complex interactions of components within a fluid power system cartridge valve systems, proportional valve and servo-systems, and compressed air drying and filtering noise reduction and other environmental concerns the control of contaminants in hydraulic and pneumatic systems the selection and care of hydraulic system fluid the reduction of leaks in fluid power systems and much more
This book contains papers presented in the 3rd International Conference on Separation Technology 2020 (ICoST 2020) held from 15 to 16th August 2020 at Johor, Malaysia. This proceeding contains papers presented by academics and industrial practitioners showcasing the latest advancements and findings in field of separation technology. The papers are categorized under the following tracks and topics of research: Environment Engineering Biotechnology Absorption and Adsorption Technology Wastewater Treatment ICoST 2020 covers multidisciplinary perspectives on separation research and aims to promote scientific information interchange between academics, researchers, graduates and industry professionals worldwide. This conference provides opportunities for the delegates to exchange new ideas and application experiences face to face, to establish business or research relations and to find global partners for future collaboration.
This book discusses chemical engineering and processing, presenting selected contributions from PAIC 2019. It covers interdisciplinary technologies and sciences, like drug-delivery systems, nanoscale technology, environmental control, modelling and computational methods. The book also explores interdisciplinary aspects of chemical and biochemical engineering interconnected with process system engineering, process safety and computer science.
This book explains theoretical derivations and presents expressions for fluid and convective turbulent flow of mildly elastic fluids in various internal and external flow situations involving different types of geometries, such as the smooth/rough circular pipes, annular ducts, curved tubes, vertical flat plates, and channels. Understanding the methodology of the analyses facilitates appreciation for the rationale used for deriving expressions of parameters relevant to the turbulent flow of mildly elastic fluids. This knowledge serves as a driving force for developing new ideas, investigating new situations, and extending theoretical analyses to other unexplored areas of the rheology of mildly elastic drag reducing fluids.The book suits a range of functions--it can be used to teach elective upper-level undergraduate or graduate courses for chemical engineers, material scientists, mechanical engineers, and polymer scientists; guide researchers unexposed to this alluring and interesting area of drag reduction; and serve as a reference to all who want to explore and expand the areas dealt with in this book.
This contributed volume is based on talks given at the August 2016 summer school "Fluids Under Pressure," held in Prague as part of the "Prague-Sum" series. Written by experts in their respective fields, chapters explore the complex role that pressure plays in physics, mathematical modeling, and fluid flow analysis. Specific topics covered include: Oceanic and atmospheric dynamics Incompressible flows Viscous compressible flows Well-posedness of the Navier-Stokes equations Weak solutions to the Navier-Stokes equations Fluids Under Pressure will be a valuable resource for graduate students and researchers studying fluid flow dynamics.
This comprehensive guide offers authoritative answers on flow measurement from dozens of leading experts. Fully illustrated with diagrams, tables, and formulas, Flow Measurement covers virtually every type of flow meter in use today, including those for heat exchangers and gaseous fuels, and laminar, magnetic and mass flow meters. Valuable information on applications and selection criteria.
This book describes the unsteady phenomena needed to understand supersonic combustion. Following an initial chapter that introduces readers to the basic concepts in and classical studies on unsteady supersonic combustion, the book highlights recent studies on unsteady phenomena, which offer insights on e.g. interactions between acoustic waves and flames, flow dominating instability, ignition instability, flame flashback, and near-blowout-limit combustion. In turn, the book discusses in detail the fundamental mechanisms of these phenomena, and puts forward practical suggestions for future scramjet design.
This thesis demonstrates the first use of high-speed ultrasound imaging to non-invasively probe how the interior of a dense suspension responds to impact. Suspensions of small solid particles in a simple liquid can generate a rich set of dynamic phenomena that are of fundamental scientific interest because they do not conform to the typical behavior expected of either solids or liquids. Most remarkable is the highly counter-intuitive ability of concentrated suspensions to strongly thicken and even solidify when sheared or impacted. The understanding of the mechanism driving this solidification is, however, still limited, especially for the important transient stage while the response develops as a function of time. In this thesis, high-speed ultrasound imaging is introduced to track, for the first time, the transition from the flowing to the solidified state and directly observe the shock-like shear fronts that accompany this transition. A model is developed that agrees quantitatively with the experimental measurements. The combination of imaging techniques, experimental design, and modeling in this thesis represents a major breakthrough for the understanding of the dynamic response of dense suspensions, with important implications for a wide range of applications ranging from the handling of slurries to additive manufacturing.
This book highlights recent research advances in the area of turbulent flows from both industry and academia for applications in the area of Aerospace and Mechanical engineering. Contributions include modeling, simulations and experiments meant for researchers, professionals and students in the area.
This book discusses the numerical simulation of water waves, which combines mathematical theories and modern techniques of numerical simulation to solve the problems associated with waves in coastal, ocean, and environmental engineering. Bridging the gap between practical mathematics and engineering, the book describes wave mechanics, establishment of mathematical wave models, modern numerical simulation techniques, and applications of numerical models in engineering. It also explores environmental issues related to water waves in coastal regions, such as pollutant and sediment transport, and introduces numerical wave flumes and wave basins. The material is self-contained, with numerous illustrations and tables, and most of the mathematical and engineering concepts are presented or derived in the text. The book is intended for researchers, graduate students and engineers in the fields of hydraulic, coastal, ocean and environmental engineering with a background in fluid mechanics and numerical simulation methods.
Cloud research is a rapidly developing branch of climate science that's vital to climate modelling. With new observational and simulation technologies our knowledge of clouds and their role in the warming climate is accelerating. This book provides a comprehensive overview of research on clouds and their role in our present and future climate, covering theoretical, observational, and modelling perspectives. Part I discusses clouds from three different perspectives: as particles, light and fluid. Part II describes our capability to model clouds, ranging from theoretical conceptual models to applied parameterised representations. Part III describes the interaction of clouds with the large-scale circulation in the tropics, mid-latitudes, and polar regions. Part IV describes how clouds are perturbed by aerosols, the land-surface, and global warming. Each chapter contains end-of-chapter exercises and further reading sections, making this an ideal resource for advanced students and researchers in climatology, atmospheric science, meteorology, and climate change.
This book describes the fundamental phenomena of, and computational methods for, hydraulic transients, such as the self-stabilization effect, restriction of the Joukowsky equation, real relations between the rigid and elastic water column theories, the role of wave propagation speed, mechanism of the attenuation of pressure fluctuations, etc. A new wave tracking method is described in great detail and, supported by the established conservation and traveling laws of shockwaves, offers a number of advantages. The book puts forward a novel method that allows transient flows to be directly computed at each time node during a transient process, and explains the differences and relations between the rigid and elastic water column theories. To facilitate their use in hydropower applications, the characteristics of pumps and turbines are provided in suitable forms and examples. The book offers a valuable reference guide for engineers and scientists, helping them make transient computations for their own programming, while also contributing to the final standardization of methods for transient computations.
The book examines innovative numerical methods for computational solid and fluid mechanics that can be used to model complex problems in engineering. It also presents innovative and promising simulation methods, including the fundamentals of these methods, as well as advanced topics and complex applications. Further, the book explores how numerical simulations can significantly reduce the number of time-consuming and expensive experiments required, and can support engineering decisions by providing data that would be very difficult, if not impossible, to obtain experimentally. It also includes chapters covering topics such as particle methods addressing particle-based materials and numerical methods that are based on discrete element formulations; fictitious domain methods; phase field models; computational fluid dynamics based on modern finite volume schemes; hybridizable discontinuous Galerkin methods; and non-intrusive coupling methods for structural models.
The book includes a section on cavitation in hydraulic structures and a concise introduction to the physics of cavitation and application to hydraulic structures. It applies the laws of similitude to the use of physical models to improve hydraulic design and computer programs for the numerical solution of unsteady flow in closed and open channels.
This book presents systematic research results on curved shock wave-curved compression surface applied to the compression surface design of supersonic-hypersonic inlet, which is a brand new inlet design. The concept of supersonic inlet curved compression discussed originated from the author's research at the Deutsches Zentrum fur Luft- und Raumfahrt (DLR SM-ES) in the early 1990s. This book introduces the research history, working characteristics, performance calculation and aerodynamic configuration design method of this compression mode in detail. It also describes method of estimating the minimum drag in inlet and drag reduction effect of curved compression and proposes a new index for evaluating unit area compression efficiency of the inlet. Further, it reviews the relevant recent research on curved compression. As such it is a valuable resource for students, researchers and scientists in the fields of hypersonic propulsion and aeronautics.
This book provides a thorough overview of transport phenomena in complex fluids, based on the latest research results and the newest methods for their analytical prediction and numerical simulation. The respective chapters cover several topics, including: a description of the structural features of the most common complex fluids (polymer and surfactant solutions, colloidal suspensions); an introduction to the most common non-Newtonian constitutive models and their relationship with the fluid microstructure; a detailed overview of the experimental methods used to characterise the thermophysical properties, bulk rheology, and surface properties of complex fluids; a comprehensive introduction to heat, mass, and momentum transport, and to hydrodynamic instabilities in complex fluids; and an introduction to state-of-the-art numerical methods used to simulate complex fluid flows, with a focus on the Smoothed Particle Hydrodynamics (SPH) and the Dissipative Particle Dynamics (DPD) techniques. Subsequent chapters provide in-depth descriptions of phenomena such as thermal convection, elastic turbulence, mixing of complex fluids, thermophoresis, sedimentation, and non-Newtonian drops and sprays. The book addresses research scientists and professionals, engineers, R&D managers and graduate students in the fields of engineering, chemistry, biology, medicine, and the applied and fundamental sciences.
The homogenization of single phase gases or liquids with chemical reactive components by mixing belongs to one of the oldest basic operations applied in chemical engineering. The design of equipment for mixing processes is still derived from measurements of the mixing time which is related to the applied methods of measurement and the special design of the test equipment itself. This book was stimulated by improved modern methods for experimental research and visualization, for simulations and numerical calculations of mixing and chemical reactions in micro and macro scale of time and local coordinates. It is aimed to improve the prediction of efficiencies and selectivities of chemical reactions in macroscopic scale. The results should give an understanding of the influence of the construction of different mixing equipment on to the momentum, heat and mass transfer as well as reaction processes running on microscopic scales of time and local coordinates. Newly developed methods of measurement are adjusted to the scales of the selected special transport and conversion processes. They allow a more detailed modeling of the mixing processes by the formulation of an appropriate set of momentum-, heat- and mass balance equations as well as boundary conditions in time and local coordinates together with constitutive equations and reaction kinetics equations as closure laws for numerical and analytical calculations. The latter were empirically derived in the past and therefore of limited reliability only. The improved and more detailed modeling leads to a major progress in predicting mixing processes on the different scales adjusted to transport and reaction processes in molecular, micro- and macro dimensions. As a consequence improved numerical calculations are performed on the basis of newly derived experimental, measurement and modeling methods which are the basis for the prediction of mixing time as well as conversion rates and selectivities of chemical reactions during the mixing process. The research efforts are focused onto the design of the technical equipment for flow mixing processes. Mixing is performed inside velocity fields leading to deformation gradients from free or wall induced boundary layers. The different kinds of process equipment are jet mixer, static mixer and mixing vessels equipped with rotating stirrers. Especially in micro mixing newly developed constructions are investigated permitting the scale up from laboratory to technical dimensions.
This book presents selected and peer-reviewed proceedings of the International Conference on Thermofluids (KIIT Thermo 2020). It focuses on the latest studies and findings in the areas of fluid dynamics, heat transfer, thermodynamics, and combustion. Some of the topics covered in the book include electronic cooling, HVAC system analysis, inverse heat transfer, combustion, nano-fluids, multiphase flow, high-speed flow, and shock waves. The book includes both experimental and numerical studies along with a few review chapters from experienced researchers, and is expected to lead to new research in this important area. This book is of interest to students, researchers as well as practitioners working in the areas of fluid dynamics, thermodynamics, and combustion.
Treating multiphase systems with emphasis on the aspect of fluid dynamics and as an introduction to research in multiphase flow, this book covers definitive concepts, methods, and theories which have been validated by experimental results. A textbook for college seniors and graduate students and a research reference, it is a coherent presentation that facilitates the understanding of physical interactions. The book's focus is fluid dynamics, with extension to other transport processes of heat and mass transfer, and chemical relations to illustrate applications of multiphase flow. The exercise problems at the end of each chapter assist the reader in formulating and solving physical problems and gaining a sense of magnitude of interacting effects and events. Extended details and corollaries are also included in these exercise problems. Some of the topics in the exercise problems may also be incorporated as topics for the lectures.
This volume provides an overview of the recent advances in the field of paper microfluidics, whose innumerable research domains have stimulated considerable efforts to the development of rapid, cost-effective and simplified point-of-care diagnostic systems. The book is divided into three parts viz. theoretical background of paper microfluidics, fabrication techniques for paper-based devices, and broad applications. Each chapter of the book is self-explanatory and focuses on a specific topic and its relation to paper microfluidics and starts with a brief description of the topic's physical background, essential definitions, and a short story of the recent progress in the relevant field. The book also covers the future outlook, remaining challenges, and emerging opportunities. This book shall be a tremendous up-to-date resource for researchers working in the area globally.
This book reports on cutting-edge research and technical achievements in the field of hydraulic drives. The chapters, selected from contributions presented at the International Scientific-Technical Conference on Hydraulic and Pneumatic Drives and Controls, NSHP 2020, held on October 21-23, 2020, in Trzebieszowice, Poland, cover a wide range of topics such as theoretical advances in fluid technology, work machines in mining, construction, marine and manufacturing industry, and practical issues relating to the application and operation of hydraulic drives. Further topics include: safety and environmental issues associated with the use of machines with hydraulic drive, and new materials in design of hydraulic components. A special emphasis is given to new solutions for hydraulic components and systems as well as to the identification of phenomena and processes occurring during the operation of hydraulic and pneumatic systems.
The book investigates the role of artificial input delay in approximating unknown system dynamics, referred to as time-delayed control (TDC), and provides novel solutions to current design issues in TDC. Its central focus is on designing adaptive-switching gain-based robust control (ARC) for a class of Euler-Lagrange (EL) systems with minimal or no knowledge of the system dynamics parameters. The newly proposed TDC-based ARC tackles the commonly observed over- and under-estimation issues in switching gain. The consideration of EL systems lends a practical perspective on the proposed methods, and each chapter is supplemented by relevant experimental data. The book offers a unique resource for researchers in the areas of ARC and TDC alike, and covers the state of the art, new algorithms, and future directions.
This book discusses instrumentation and experimental methods for obtaining detailed information on the structure of various types of flows as well as standard process flow instrumentation suitable for industrial control applications. It assists research-oriented and process engineering personnel. |
You may like...
Hypersonic Vehicles - Past, Present and…
Giuseppe Pezzella, Antonio Viviani
Hardcover
Message From the Governor - Accompanied…
Pennsylvania Board of Canal Commissi
Hardcover
R958
Discovery Miles 9 580
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,377
Discovery Miles 23 770
Emerging Technologies in Hydraulic…
Kenneth Imo-Imo Israel Eshiet, Rouzbeh G. Moghanloo
Hardcover
Selected Articles on the Fortification…
Clara Elizabeth Fanning
Hardcover
R680
Discovery Miles 6 800
|