Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
This Brief reports on heat transfer from a solid boundary in a saturated porous medium. Experiments reveal overall heat transfer laws when the flow along the wall is driven by buoyancy produced by large temperature differences, and mathematical analysis using advanced volume-averaging techniques produce estimates of how heat is dispersed in the porous zone. Engineers, hydrologists and geophysicists will find the results valuable for validation of laboratory and field tests, as well as testing their models of dispersion of heat and mass in saturated media.
Flow Measurement Handbook is a reference for engineers on flow measurement techniques and instruments. It strikes a balance between laboratory ideas and the realities of field experience and provides practical advice on design, operation and performance of flowmeters. It begins with a review of essentials: accuracy, flow, selection and calibration methods. Each chapter is then devoted to a flowmeter class and includes information on design, application installation, calibration and operation. Among the flowmeters discussed are differential pressure devices such as orifice and Venturi, volumetric flowmeters such as positive displacement, turbine, vortex, electromagnetic, magnetic resonance, ultrasonic, acoustic, multiphase flowmeters and mass meters, such as thermal and Coriolis. There are also chapters on probes, verification and remote data access.
Explosions, and the non-steady shock propagation associated with them, continue to interest researchers working in different fields of physics and engineering (such as astrophysics and fusion). Based on the author's course in shock dynamics, this book describes the various analytical methods developed to determine non-steady shock propagation. These methods offer a simple alternative to the direct numerical integration of the Euler equations and offer a better insight into the physics of the problem. Professor Lee presents the subject systematically and in a style that is accessible to graduate students and researchers working in shock dynamics, combustion, high-speed aerodynamics, propulsion and related topics.
Small-scale turbulent flow dynamics is traditionally viewed as universal and as enslaved to that of larger scales. In coarse grained simulation (CGS), large energy-containing structures are resolved, smaller structures are spatially filtered out, and unresolved subgrid scale (SGS) effects are modeled. Coarse Grained Simulation and Turbulent Mixing reviews our understanding of CGS. Beginning with an introduction to the fundamental theory the discussion then moves to the crucial challenges of predictability. Next, it addresses verification and validation, the primary means of assessing accuracy and reliability of numerical simulation. The final part reports on the progress made in addressing difficult non-equilibrium applications of timely current interest involving variable density turbulent mixing. The book will be of fundamental interest to graduate students, research scientists, and professionals involved in the design and analysis of complex turbulent flows.
In recent years, stylized forms of the Boltzmann equation, now going by the name of "Lattice Boltzmann equation" (LBE), have emerged, which relinquish most mathematical complexities of the true Boltzmann equation without sacrificing physical fidelity in the description of many situations involving complex fluid motion. This book provides the first detailed survey of LBE theory and its major applications to date. Accessible to a broad audience of scientists dealing with complex system dynamics, the book also portrays future developments in allied areas of science (material science, biology etc.) where fluid motion plays a distinguished role.
This brief explains in detail fundamental concepts in acoustic cavitation and bubble dynamics, and describes derivations of the fundamental equations of bubble dynamics in order to support those readers just beginning research in this field. Further, it provides an in-depth understanding of the physical basis of the phenomena. With regard to sonochemistry, the brief presents the results of numerical simulations of chemical reactions inside a bubble under ultrasound, especially for a single-bubble system and including unsolved problems. Written so as to be accessible both with and without prior knowledge of fundamental fluid dynamics, the brief offers a valuable resource for students and researchers alike, especially those who are unfamiliar with this field. A grasp of fundamental undergraduate mathematics such as partial derivative and fundamental integration is advantageous; however, even without any background in mathematics, readers can skip the equations and still understand the fundamental physics of the phenomena using the book's wealth of illustrations and figures. As such, it is also suitable as an introduction to the field.
As in previous editions, this ninth edition of Massey s Mechanics of Fluids introduces the basic principles of fluid mechanics in a detailed and clear manner. This bestselling textbook provides the sound physical understanding of fluid flow that is essential for an honours degree course in civil or mechanical engineering as well as courses in aeronautical and chemical engineering. Focusing on the engineering applications of fluid flow, rather than mathematical techniques, students are gradually introduced to the subject, with the text moving from the simple to the complex, and from the familiar to the unfamiliar. In an all-new chapter, the ninth edition closely examines the modern context of fluid mechanics, where climate change, new forms of energy generation, and fresh water conservation are pressing issues. SI units are used throughout and there are many worked examples. Though the book is essentially self-contained, where appropriate, references are given to more detailed or advanced accounts of particular topics providing a strong basis for further study. For lecturers, an accompanying solutions manual is available."
First published in 1959, this second edition of a 1952 original forms part of the Cambridge Aeronautical Series. The text provides a detailed discussion regarding control and stability in aircraft, encompassing the broader subject of aircraft dynamics. Information on newer discoveries related to the effects of compressibility of air and the deformation of aircraft structures is included. A table of American and British terms and symbols is also incorporated. This book will be of value to anyone with an interest in aeronautics, aerodynamics and the history of science.
Aimed at advanced undergraduate and graduate students, this book provides a clear unified view of continuum mechanics that will be a welcome addition to the literature. Samuel Paolucci provides a well-grounded mathematical structure and also gives the reader a glimpse of how this material can be extended in a variety of directions, furnishing young researchers with the necessary tools to venture into brand new territory. Particular emphasis is given to the roles that thermodynamics and symmetries play in the development of constitutive equations for different materials. Continuum Mechanics and Thermodynamics of Matter is ideal for a one-semester course in continuum mechanics, with 250 end-of-chapter exercises designed to test and develop the reader's understanding of the concepts covered. Six appendices enhance the material further, including a comprehensive discussion of the kinematics, dynamics and balance laws applicable in Riemann spaces.
Principles of Nuclear Rocket Propulsion, Second Edition continues to put the technical and theoretical aspects of nuclear rocket propulsion into a clear and unified presentation, providing an understanding of the physical principles underlying the design and operation of nuclear fission-based rocket engines. This new edition expands on existing material and adds new topics, such as antimatter propulsion, a description of a liquid core-based nuclear rocket engine, nuclear rocket startup, new fuel forms, reactor stability, and new advanced reactor concepts. This new edition is for aerospace and nuclear engineers and advanced students interested in nuclear rocket propulsion.
Understanding the characteristics of material contact and lubrication at tribological interfaces is of great importance to engineering researchers and machine designers. Traditionally, contact and lubrication are separately studied due to technical difficulties, although they often coexist in reality and they are actually on the same physical ground. Fast research advancements in recent years have enabled the development and application of unified models and numerical approaches to simulate contact and lubrication, merging their studies into the domain of Interfacial Mechanics. This book provides updated information based on recent research progresses in related areas, which includes new concepts, theories, methods, and results for contact and lubrication problems involving elastic or inelastic materials, homogeneous or inhomogeneous contacting bodies, using stochastic or deterministic models for dealing with rough surfaces. It also contains unified models and numerical methods for mixed lubrication studies, analyses of interfacial frictional and thermal behaviors, as well as theories for studying the effects of multiple fields on interfacial characteristics. The book intends to reflect the recent trends of research by focusing on numerical simulation and problem solving techniques for practical interfaces of engineered surfaces and materials. This book is written primarily for graduate and senior undergraduate students, engineers, and researchers in the fields of tribology, lubrication, surface engineering, materials science and engineering, and mechanical engineering.
HYDRODYNAMIC PROPULSION AND ITS OPTIMIZATION ANALYTIC THEORY Hydrodynamic propulsion has been of major interest ever since craft took to the water. In the course of time, many attempts have been made to invent, develop, or to improve hydrodynamic propulsion devices. Remarkable achievements in this field were made essentially by experienced individuals, who were in need of reliable propulsion units such as paddle wheels, sculling devices, screw propellers, and of course, sails. The problem of minimizing the amount of input energy for a prescribed effective output was first investigated seriously at the beginning of this century. In 1919, BETZ presented a paper on air-screw propellers with minimum consumption of energy which could be applied to ship-screw propellers also. Next, attempts were made to optimize hydrodynamic propulsion units. Ensuing investigations concerned the optimization of the hydrodynamic system: ship-propeller. The first simple theory of ship propulsion which was presented considered more or less only thrust augmentation, wake processing and modification of propeller characteristics when operating behind the ships hull. This theory has been little improved meanwhile and is still useful, particularly with regard to practical ship design and for evaluating results of ship model tests. However, this theory is not adequate for optimization procedures necessary for high-technology propulsion, particularly for ship propellers utilizing propulsion improving devices such as tip end plates or tip fins at the propeller blades, spoilers in front of the propeller, asymmetrical stern etc.
In recent years there has been a revival of interest in the hydraulic ram pump, a renewable energy water-lifting device. "Hydraulic Ram Pumps" aims to introduce the reader to all aspects of ram pumps. It should be useful to technicians and engineers involved in rural water supply, whether they are assessing the suitability of ram pumps, installing a system or contemplating local manufacture. It gives practical guidelines for the installation and operation of water supply systems based on such pumps, as well as describing the operation of the pump and the factors affecting its performance.;The reader is taken through the steps involved in designing and installing a complete system, steps that should be applicable to any model of ram pump available. Details of one pump, designed for local manufacture in developing countries, are given along with some notes on ram pump design for those wishing to develop their own models.;A number of illustrations are used alongside text in order to make the information useful to a wide range of non-specialist readers. Readers are welcome to photocopy the diagrams and add labels in other languages in order for training purposes.
Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Including case studies that illustrate the approaches relevance to automotive applications, it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.
Sonja Dieterich zeigt, dass die Natur der Phasenumwandlung von der smektischen A- in die smektische C‑Phase ein wichtiges Kriterium für die Anwendbarkeit des Langevin-Modells ist, welches das elektrooptische Verhalten von Flüssigkristallen vom de Vries-Typ beschreibt. Dagegen spielt die genaue chemische Struktur des Mesogens, die seine nanosegregierenden Eigenschaften beeinflusst, eine untergeordnete Rolle. Weiterhin konnte die Autorin smektische Schichten kalamitischer nanosegregierender Mesogene mittels Freeze-Fracture Transmissionselektronenmikroskopie direkt abbilden.
This book aims to cast light on all aspects of tunnel fires, based on experimental activities and theoretical and computational fluid dynamics (CFD) analyses. In particular, the authors describe a transient full-scale fire test (~15 MW), explaining how they designed and performed the experimental activity inside the Morgex North tunnel in Italy. The entire organization of the experiment is described, from preliminary evaluations to the solutions found for management of operational difficulties and safety issues. This fire test allowed the collection of different measurements (temperature, air velocity, smoke composition, pollutant species) useful for validating and improving CFD codes and for testing the real behavior of the tunnel and its safety systems during a diesel oil fire with a significant heat release rate. Finally, the fire dynamics are compared with empirical correlations, CFD simulations, and literature measurements obtained in other similar tunnel fire tests. This book will be of interest to all engineers and public officials who are concerned with the nature, prevention, and management of tunnel fires.
This text focuses on a variety of topics in mathematics in common usage in graduate engineering programs including vector calculus, linear and nonlinear ordinary differential equations, approximation methods, vector spaces, linear algebra, integral equations and dynamical systems. The book is designed for engineering graduate students who wonder how much of their basic mathematics will be of use in practice. Following development of the underlying analysis, the book takes students through a large number of examples that have been worked in detail. Students can choose to go through each step or to skip ahead if they so desire. After seeing all the intermediate steps, they will be in a better position to know what is expected of them when solving assignments, examination problems, and when on the job. Chapters conclude with exercises for the student that reinforce the chapter content and help connect the subject matter to a variety of engineering problems. Students have grown up with computer-based tools including numerical calculations and computer graphics; the worked-out examples as well as the end-of-chapter exercises often use computers for numerical and symbolic computations and for graphical display of the results.
In order to apply the damage tolerance design philosophy to design marine structures, accurate prediction of fatigue crack growth under service conditions is required. Now, more and more people have realized that only a fatigue life prediction method based on fatigue crack propagation (FCP) theory has the potential to explain various fatigue phenomena observed. In this book, the issues leading towards the development of a unified fatigue life prediction (UFLP) method based on FCP theory are addressed. Based on the philosophy of the UFLP method, the current inconsistency between fatigue design and inspection of marine structures could be resolved. This book presents the state-of-the-art and recent advances, including those by the authors, in fatigue studies. It is designed to lead the future directions and to provide a useful tool in many practical applications. It is intended to address to engineers, naval architects, research staff, professionals and graduates engaged in fatigue prevention design and survey of marine structures, in fatigue studies of materials and structures, in experimental laboratory research, in planning the repair and maintenance of existing structures, and in rule development. The book is also an effective educational aid in naval architecture, marine, civil and mechanical engineering. Prof. Weicheng Cui is the Dean of Hadal Science and Technology Research Center of Shanghai Ocean University, China. Dr. Xiaoping Huang is an associate professor of School of Naval Architecture, Ocean and Civil Engineering of Shanghai Jiao Tong University, China. Dr. Fang Wang is an associate professor of Hadal Science and Technology Research Center of Shanghai Ocean University, China.
A thorough understanding of the interaction of waves and currents with offshore structures has now become a vital factor in the safe and economical design of various offshore technologies. There has been a significant increase in the research efforts to meet this need. Although considerable progress has been made in the offshore industry and in the understanding of the interaction of waves, currents, and wind with ocean structures, most of the available books concentrate only on practical applications without a grounding in the physics. This text strives to integrate an understanding of the physics of ocean structure interactions with numerous applications. This more complete understanding will allow the engineer and designer to solve problems heretofore not encountered, and to design new and innovative structures. The intent of this book is to serve the needs of future generations of engineers designing more sophisticated structures at ever increasing depths."
This successful book gives an introduction to the basics of aerothermodynamics, as applied in particular to winged re-entry vehicles and airbreathing hypersonic cruise and acceleration vehicles. The book gives a review of the issues of transport of momentum, energy and mass, real-gas effects as well as inviscid and viscous flow phenomena. In this second, revised edition the chapters with the classical topics of aerothermodynamics more or less were left untouched. The access to some single topics of practical interest was improved. Auxiliary chapters were put into an appendix. The recent successful flights of the X-43A and the X-51A indicate that the dawn of sustained airbreathing hypersonic flight now has arrived. This proves that the original approach of the book to put emphasis on viscous effects and the aerothermodynamics of radiation-cooled vehicle surfaces was timely. This second, revised edition even more accentuates these topics. A new, additional chapter treats examples of viscous thermal surface effects. Partly only very recently obtained experimental and numerical results show the complexity of such phenomena (dependence of boundary-layer stability, skin friction, boundary-layer thicknesses, and separation on the thermal state of the surface) and their importance for airbreathing hypersonic flight vehicles, but also for any other kind of hypersonic vehicle.
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
This proceedings present the results of the 29th International Symposium on Shock Waves (ISSW29) which was held in Madison, Wisconsin, U.S.A., from July 14 to July 19, 2013. It was organized by the Wisconsin Shock Tube Laboratory, which is part of the College of Engineering of the University of Wisconsin-Madison. The ISSW29 focused on the following areas: Blast Waves, Chemically Reactive Flows, Detonation and Combustion, Â Facilities, Flow Visualization, Hypersonic Flow, Ignition, Impact and Compaction, Industrial Applications, Magnetohydrodynamics, Medical and Biological Applications, Nozzle Flow, Numerical Methods, Plasmas, Propulsion, Richtmyer-Meshkov Instability, Shock-Boundary Layer Interaction, Shock Propagation and Reflection, Shock Vortex Interaction, Shock Waves in Condensed Matter, Shock Waves in Multiphase Flow, as well as Shock Waves in Rarefield Flow. The two Volumes contain the papers presented at the symposium and serve as a reference for the participants of the ISSW 29 and individuals interested in these fields.
The book includes the research papers presented in the final conference of the EU funded SARISTU (Smart Intelligent Aircraft Structures) project, held at Moscow, Russia between 19-21 of May 2015. The SARISTU project, which was launched in September 2011, developed and tested a variety of individual applications as well as their combinations. With a strong focus on actual physical integration and subsequent material and structural testing, SARISTU has been responsible for important progress on the route to industrialization of structure integrated functionalities such as Conformal Morphing, Structural Health Monitoring and Nanocomposites. The gap- and edge-free deformation of aerodynamic surfaces known as conformal morphing has gained previously unrealized capabilities such as inherent de-icing, erosion protection and lightning strike protection, while at the same time the technological risk has been greatly reduced. Individual structural health monitoring techniques can now be applied at the part-manufacturing level rather than via extending an aircraft's time in the final assembly line. And nanocomposites no longer lose their improved properties when trying to upscale from neat resin testing to full laminate testing at element level. As such, this book familiarizes the reader with the most significant develo pments, achievements and key technological steps which have been made possible through the four-year long cooperation of 64 leading entities from 16 different countries with the financial support of the European Commission.
The book describes the main findings of the EU-funded project IDIHOM (Industrialization of High-Order Methods - A Top-Down Approach). The goal of this project was the improvement, utilization and demonstration of innovative higher-order simulation capabilities for large-scale aerodynamic application challenges in the aircraft industry. The IDIHOM consortium consisted of 21 organizations, including aircraft manufacturers, software vendors, as well as the major European research establishments and several universities, all of them with proven expertise in the field of computational fluid dynamics. After a general introduction to the project, the book reports on new approaches for curved boundary-grid generation, high-order solution methods and visualization techniques. It summarizes the achievements, weaknesses and perspectives of the new simulation capabilities developed by the project partners for various industrial applications, and includes internal- and external-aerodynamic as well as multidisciplinary test cases.
Mathematical analyses and computational predictions of the behavior of complex systems are needed to effectively deal with weather and climate predictions, for example, and the optimal design of technical processes. Given the random nature of such systems and the recognized relevance of randomness, the equations used to describe such systems usually need to involve stochastics. The basic goal of this book is to introduce the mathematics and application of stochastic equations used for the modeling of complex systems. A first focus is on the introduction to different topics in mathematical analysis. A second focus is on the application of mathematical tools to the analysis of stochastic equations. A third focus is on the development and application of stochastic methods to simulate turbulent flows as seen in reality. This book is primarily oriented towards mathematics and engineering PhD students, young and experienced researchers, and professionals working in the area of stochastic differential equations and their applications. It contributes to a growing understanding of concepts and terminology used by mathematicians, engineers, and physicists in this relatively young and quickly expanding field. |
You may like...
The 1915 Mode as Shown by Paris, Panama…
Panama-Pacific International Exposition
Hardcover
R758
Discovery Miles 7 580
Selected Articles on the Fortification…
Clara Elizabeth Fanning
Hardcover
R680
Discovery Miles 6 800
The Blue Book; a Comprehensive Official…
Panama-Pacific International Exposition
Hardcover
R865
Discovery Miles 8 650
Fundamentals of Vehicle Dynamics…
Thomas D. Gillespie
Hardcover
Rowland Vaughan - His Books, Published…
Rowland Vaughan, Ellen Beatrice Wood
Hardcover
R795
Discovery Miles 7 950
Advances in Fluid Dynamics with emphasis…
Santiago Hernandez, Peter Vorobieff
Hardcover
R2,659
Discovery Miles 26 590
|