![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
The term transport phenomena is used to describe processes in which mass, momentum, energy and entropy move about in matter. Advances in Transport Phenomena provide state-of-the-art expositions of major advances by theoretical, numerical and experimental studies from a molecular, microscopic, mesoscopic, macroscopic or megascopic point of view across the spectrum of transport p- nomena, from scientific enquiries to practical applications. The annual review series intends to fill the information gap between regularly published journals and university-level textbooks by providing in-depth review articles over a broader scope than in journals. The authoritative articles, contributed by international- leading scientists and practitioners, establish the state of the art, disseminate the latest research discoveries, serve as a central source of reference for fundamentals and applications of transport phenomena, and provide potential textbooks to senior undergraduate and graduate students. The series covers mass transfer, fluid mechanics, heat transfer and thermo- namics. The 2009 volume contains the four articles on biomedical, environmental and nanoscale transports. The editorial board expresses its appreciation to the c- tributing authors and reviewers who have maintained the standard associated with Advances in Transport Phenomena. We also would like to acknowledge the efforts of the staff at Springer who have made the professional and attractive pr- entation of the volume. Serial Editorial Board Editor-in-Chief Professor L. Q. Wang The University of Hong Kong, Hong Kong; lqwang@hku. hk Editors Professor A. R. Balakrishnan Indian Institute of Technology Madras, India Professor A.
The geo-hydro-morphometry of the river Ganges has a history of
long and wide variations as the river is continuously fed by the
high Himalayas hill ranges, the highest in the world. The river is
categorized as an international one, passing through several
independent countries. Audience The book will be of interest to researchers and scientists, professionals and policymakers in water resources management and environmental science, conservation policy and development research.
The book focuses on the physical and mathematical foundations of model-based turbulence control: reduced-order modelling and control design in simulations and experiments. Leading experts provide elementary self-consistent descriptions of the main methods and outline the state of the art. Covered areas include optimization techniques, stability analysis, nonlinear reduced-order modelling, model-based control design as well as model-free and neural network approaches. The wake stabilization serves as unifying benchmark control problem.
The articles in the book treat flow instability and transition starting with classical material dealt with in an innovative and rigorous way, some newer physical mechanisms explained for the first time and finally with the very complex topic of bombustion and two-phase flow instabilities.
The motions of liquids in moving containers constitute a broad class of problems of great practical importance in many technical fields. The influence of the dynamics of the liquid on the motions of the container itself is a most interesting and complex aspect of the general subject, whether one considers only the rigid-body motions of the container or its elastic motions as well. It is most fitting therefore that this translation of Professor Rapoport's book has been undertaken so promptly following its original publication, so as to make readily available this rather detailed account of the mathematical foundations underlying the treatment of such prob lems. Since most of this vast body of analysis has been developed over the past decade by scientists in the USSR, and has therefore been largerly unavailable to those unable to read Russian, this volume will undoubtedly be of great value to many of us. H."
The book deals with modern methods of nonlinear stability theory applied to problems of continuous media mechanics in the presence of interfaces, with applications to materials science, chemical engineering, heat transfer technologies, as well as in combustion and other reaction-diffusion systems. Interfaces play a dominant role at small scales, and their correct modeling is therefore also crucial in the rapidly expanding fields of microfluidics and nanotechnologies. To this aim, the book combines contributions of eminent specialists in the field, with a special emphasis on rigorous and predictive approaches. Other goals of this volume are to allow the reader to identify key problems of high scientific value, and to see the similarity between a variety of seemingly different physical problems.
The dynamics of transition from laminar to turbulent flow remains to this day a major challenge in theoretical and applied mechanics. A series of IUTAM symposia held over the last twenty five years at well-known Centres of research in the subject - Novosibirsk, Stuttgart, Toulouse, Sendai and Sedona (Arizona) - has proved to be a great catalyst which has given a boost to research and our understanding of the field. At this point of time, the field is changing significantly with several emerging directions. The sixth IUTAM meeting in the series, which was held at the Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India, focused on the progress after the fifth meeting held at Sedona in 1999. The s- posium, which adhered to the IUTAM format of a single session, included seven invited lectures, fifty oral presentations and eight posters. During the course of the symposium, the following became evident. The area of laminar-turbulent transition has progressed considerably since 1999. Better theoretical tools, for handling nonlinearities as well as transient behaviour are now available. This is accompanied by an en- mous increase in the level of sophistication of both experiments and direct numerical simulations. The result has been that our understanding of the early stages of the transition process is now on much firmer footing and we are now able to study many aspects of the later stages of the transition process.
This book contains the main results of the German project POPINDA. It surveys the state of the art of industrial aerodynamic design simulations on parallel systems. POPINDA is an acronym for Portable Parallelization of Industrial Aerodynamic Applications. This project started in late 1993. The research and development work invested in POPINDA corresponds to about 12 scientists working full-time for the three and a half years of the project. POPINDA was funded by the German Federal Ministry for Education, Science, Research and Technology (BMBF). The central goals of POPINDA were to unify and parallelize the block-structured aerodynamic flow codes of the German aircraft industry and to develop new algorithmic approaches to improve the efficiency and robustness of these programs. The philosophy behind these goals is that challenging and important numerical appli cations such as the prediction of the 3D viscous flow around full aircraft in aerodynamic design can only be carried out successfully if the benefits of modern fast numerical solvers and parallel high performance computers are combined. This combination is a "conditio sine qua non" if more complex applications such as aerodynamic design optimization or fluid structure interaction problems have to be solved. When being solved in a standard industrial aerodynamic design process, such more complex applications even require a substantial further reduction of computing times. Parallel and vector computers on the one side and innovative numerical algorithms such as multigrid on the other have enabled impressive improvements in scientific computing in the last 15 years."
In this issue of Notes on Numerical Fluid Mechanics and Multidisciplinary Design (NNFM) the results of the collaborative research center SFB 401 Flow Modulation and Fluid-Structure Interaction at Airplane Wings at the Rheinisch-Westf. alische Technische Hochschule (RWTH) Aachen University are reported. The funding was provided by the Deutsche Forschungsgeme- schaft (DFG). The research was performed from 1997 through 2008 and on the average consisted of more than 14 subprojects per year. Approximately 110 scientists from universities of the Austria, Belgium, France, Great Britain, Italy, Japan, Netherlands, Russia, South Korea, S- den, Switzerland, United States, and international research organizations such as DLR, NASA, NLR, ONERA were invited. The distinct scientists from all over the world gave seminars on topics related to the research ?elds tackled in the collaborative research center SFB 401. Some of them stayed for just a few days, others were hosted for a longer time to intensify the joint research. Besidesthescienti?cvaluetheFlow Modulation and Fluid-StructureInt- action at Airplane Wings programpossessesapronouncededucationalmerit. This becomes evident by the fact that 35 doctoral theses, 80 diploma theses, and 117 study theses were stimulated by the research program of the SFB 401 and ?nished before 2010. The authors of this issue of NNFM acknowledge the valuable support fromall guestscientists and everybodyscienti?callyinvolvedin the SFB 401.
The present book contains papers that have been selected from contributions to the First International Symposium on Turbulent Shear Flows which was held from the 18th to 20th April 1977 at The Pennsylvania State University, University Park, Pennsylvania, USA. Attend ees from close to 20 countries presented over 100 contributions at this meeting in which many aspects of the current activities in turbulence research were covered. Five topics received particular attention at the Symposium: Free Flows Wall Flows Recirculating Flows Developments in Reynolds Stress Closures New Directions in Modeling This is also reflected in the five chapters of this book with contributions from research workers from different countries. Each chapter covers the most valuable contributions of the conference to the particular chapter topic. Of course, there were many additional good con tributions to each subject at the meeting but the limitation imposed on the length of this volume required that a selection be made. The realization of the First International Symposium on Turbulent Shear Flows was p- sible by the general support of: U. S. Army Research Office U. S. Navy Research Office Continuing Education Center of The Pennsylvania State University The conference organization was carried out by the organizing committee consisting of: F. Durst, Universitat Karlsruhe, Karlsruhe, Fed. Rep. of Germany V. W. Goldschmidt, Purdue University, West Lafayette, Ind. , USA B. E. Launder, University of California, Davis, Calif. , USA F. W. Schmidt, Pennsylvania State University, University Park, Penna.
Natural fires can be considered as scale-dependant, non-linear processes of mass, momentum and heat transport, resulting from a turbulent reactive and radiative fluid medium flowing over a complex medium, the vegetal fuel. In natural outdoor conditions, the experimental study of natural fires at real scale needs the development of an original metrology, one able to capture the large range of time and length scales involved in its dynamic nature and also able to resist the thermal, mechanical and chemical aggression of flames on devices. Robust, accurate and poorly intrusive tools must be carefully set-up and used for gaining very fluctuating data over long periods. These signals also need the development of original post-processing tools that take into account the non-steady nature of their stochastic components. Metrology for Fire Experiments in Outdoor Conditions closely analyzes these features, and also describes measurements techniques, the thermal insulation of fragile electronic systems, data acquisition, measurement errors and optimal post-processing algorithms. This book is intended for practitioners as a reference guide for optimizing measurements techniques in an outdoor environment. Advanced-level students and researchers will also find the book invaluable.
Modeling complex biological, chemical, and physical systems, in the context of spatially heterogeneous mediums, is a challenging task for scientists and engineers using traditional methods of analysis. Modeling in Applied Sciences is a comprehensive survey of modeling large systems using kinetic equations, and in particular the Boltzmann equation and its generalizations. An interdisciplinary group of leading authorities carefully develop the foundations of kinetic models and discuss the connections and interactions between model theories, qualitative and computational analysis and real-world applications. This book provides a thoroughly accessible and lucid overview of the different aspects, models, computations, and methodology for the kinetic-theory modeling process. Topics and Features: * Integrated modeling perspective utilized in all chapters * Fluid dynamics of reacting gases * Self-contained introduction to kinetic models * Becker-Doring equations * Nonlinear kinetic models with chemical reactions * Kinetic traffic-flow models * Models of granular media * Large communication networks * Thorough discussion of numerical simulations of Boltzmann equation This new book is an essential resource for all scientists and engineers who use large-scale computations for studying the dynamics of complex systems of fluids and particles. Professionals, researchers, and postgraduates will find the book a modern and authoritative guide to the topic.
These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991."
* Introduces a state-of-the-art method for the study of the asymptotic behavior of solutions to evolution partial differential equations. * Written by established mathematicians at the forefront of their field, this blend of delicate analysis and broad application is ideal for a course or seminar in asymptotic analysis and nonlinear PDEs. * Well-organized text with detailed index and bibliography, suitable as a course text or reference volume.
This monograph, entirely devoted to Convection in Fluids, presents a unified rational approach of various convective phenomena in fluids (mainly considered as a thermally perfect gas or an expansible liquid), where the main driving mechanism is the buoyancy force (Archimedean thrust) or temperature-dependent surface tension in homogeneities (Marangoni effect). Also, the general mathematical formulation (for instance, in the Benard problem - heated from below) and the effect of free surface deformation are taken into account. In the case of atmospheric thermal convection, the Coriolis force and stratification effects are also considered. This volume gives a rational and analytical analysis of the above mentioned physical effects on the basis of the full unsteady Navier-Stokes and Fourier (NS-F) equations - for a Newtonian compressible viscous and heat-conducting fluid - coupled with the associated initials (at initial time), boundary (lower-at the solid plane) and free surface (upper-in contact with ambiant air) conditions. This, obviously, is not an easy but a necessary task if we have in mind a rational modelling process, and work within a numerically coherent simulation on a high speed computer."
Since the inaugural symposium at the Pennsylvania State University in 1977, the venues for the series of biennial symposia on turbulent shear flows have alternated between the USA and Europe. For the Sixth Symposium, the first to be held in France, the city of Toulouse proved a natura] choice, being a centre for the aerospace industry, meteorological research and higher education. The meeting was hosted by the Paul Sabatier University on the southern perimeter of the city, and there nearly 300 workers in the field of turbulence converged to pronounce upon, debate and absorb the current issues in turbulent shear flows and to enjoy the unfailing September sunshine. The meeting had attracted more than 200 offers of papers from which just over 100 full papers and about 20 shorter communications in open forums could be accommodated. The present volume contains 28 of the original symposium presentations selected by the editors. Each contribution has been revised by its authors - sometimes quite extensively -in the light of the oral presentation. It is our hope that the selection provides a substantial statement of permanent interest on current research in the five areas covered by this book, i.e. fundamentals and closures, scalar transport and geophysical flows, aerodynamic flows, complex flows, and numerical simulations.
This volume contains reviewed papers from the 1997 IUTAM Symposium, presenting the latest results from leading scientists within the field of detection and simulation of organized flow structures. It describes various aspects of complex, organized flow motion, including topics from decomposition techniques to topological concepts.
The call for papers for the rUTAM-Symposium on Mechanics of Passive and Active Flow Control brought an overwhelming response of applications for contributions. Fi nally 12 invited lectures, 48 papers and 23 posters were selected by thc Scientific Com mittee to be presented in the conference. 58 papers are published in this volume. Due to the limited number of pages available, poster presentations could not be considered for publication. The editors would like to thank all the members of the Scientific Committee for their very valuable assistance. The papers presented at the rUT AM Symposium were classified under three groups de voted to * Passive Control Methods, * Active Control Methods and * Control Concepts. This was done to contrast at first between the passive techniques where the control power is mainly supplied by the flow itself and the active techniques where the power is pro vided by external sources; the third group was devoted to control concepts for presenting methods of control theory and new techniques of flow control.
In this volume, designed for engineers and scientists working in the area of Computational Fluid Dynamics (CFD), experts offer assessments of the capabilities of CFD, highlight some fundamental issues and barriers, and propose novel approaches to overcome these problems. They also offer new avenues for research in traditional and non-traditional disciplines. The scope of the papers ranges from the scholarly to the practical. This book is distinguished from earlier surveys by its emphasis on the problems facing CFD and by its focus on non-traditional applications of CFD techniques. There have been several significant developments in CFD since the last workshop held in 1990 and this book brings together the key developments in a single unified volume.
Free surface flows arise in the natural world, physical and biological sciences and in some areas of modern technology and engineering. Exam ples include the breaking of sea waves on a harbour wall, the transport of sloshing fluids in partly filled containers, and the design of micronozzles for high speed ink-jet printing. Apart from the intrinsic mathematical challenge in describing and solving the governing equations, there are usually important environmental, safety and engineering features which need to be analysed and controlled. A rich variety of techniques has been developed over the past two decades to facilitate this analysis; singular perturbations, dynamical systems, and the development of sophisticated numerical codes. The extreme and sometimes violent nature of some free surface flows taxes these methods to the limit. The work presented at the symposium addressed these limits and can be loosely classified into four areas: (i) Axisymmetric free surface flows. There are a variety of problems in the printing, glass, fertiliser and fine chemical industries in which threads of fluid are made and controlled. Presentations were made in the areas of pinch-off for inviscid and viscous threads of fluid, recoil effects after droplet formation and the control of instability by forced vibration. (ii) Dynamic wetting. The motion of three phase contact lines, which are formed at the junction between two fluids and a solid, plays an important role in fluid mechanics.
These three volumes entitled Advances in Hypersonics contain the Proceedings of the Second and Third Joint US/Europe Short Course in Hypersonics which took place in Colorado Springs and Aachen. The Second Course was organized at the US Air Force Academy, USA in January 1989 and the Third Course at Aachen, Germany in October 1990. The main idea of these Courses was to present to chemists, com puter scientists, engineers, experimentalists, mathematicians, and physicists state of the art lectures in scientific and technical dis ciplines including mathematical modeling, computational methods, and experimental measurements necessary to define the aerothermo dynamic environments for space vehicles such as the US Orbiter or the European Hermes flying at hypersonic speeds. The subjects can be grouped into the following areas: Phys ical environments, configuration requirements, propulsion systems (including airbreathing systems), experimental methods for external and internal flow, theoretical and numerical methods. Since hyper sonic flight requires highly integrated systems, the Short Courses not only aimed to give in-depth analysis of hypersonic research and technology but also tried to broaden the view of attendees to give them the ability to understand the complex problem of hypersonic flight. Most of the participants in the Short Courses prepared a docu ment based on their presentation for reproduction in the three vol umes. Some authors spent considerable time and energy going well beyond their oral presentation to provide a quality assessment of the state of the art in their area of expertise as of 1989 and 1991."
The Boundary Element Method (BEM) has become established as an effective tool for the solutions of problems in engineering science. The salient features of the BEM have been well documented in the open literature and therefore will not be elaborated here. The BEM research has progressed rapidly, especially in the past decade and continues to evolve worldwide. This Symposium was organized to provide an international forum for presentation of current research in BEM for linear and nonlinear problems in solid and fluid mechanics and related areas. To this end, papers on the following topics were included: rotary wing aerodynamics, unsteady aerodynamics, design and optimization, elasticity, elasto dynamics and elastoplasticity, fracture mechanics, acoustics, diffusion and wave motion, thermal analysis, mathematical aspects and boundary/finite element coupled methods. A special session was devoted to parallel/vector supercomputing with emphasis on mas sive parallelism. This Symposium was sponsored by United Technologies Research Center (UTRC), NASA Langley Research Center, and the International Association of Boundary Ele ment Methods (lAB EM) . We thank the UTRC management for their permission to host this Symposium. In particular, we thank Dr. Arthur S. Kesten and Mr. Robert E. Olson for their encouragement and support. We gratefully acknowledge the support of Dr. E. Carson Yates, Jr. of NASA Langley, Prof. Luigi Morino, Dr. Thomas A."
This title includes a number of Open Access chapters. Hydraulic fracturing, or "fracking" as it is commonly known, refers to the practice of using liquids at very high pressures to fragment rock, thereby allowing natural gas to be harvested. This process increases energy resources but also has some negative environmental impacts as well. This book looks at the environmental impact. The first section looks at fracturing and the water supply, the second section looks at ecosystems and wildlife, while the final section examines the possible effects on human ecosystems and human health.
This volume comprises a selection of the best papers presented at the Seventh Interna tional Symposium on Applications of Laser Techniques to Fluid Mechanics held at The Calouste Gulbenkian Foundation in Lisbon, during the period of July 11 to 14,1994. The papers describe Applications to Fluid Mechanics, Applications to Combustion, Instrumentation for Velocity and Size Measurements and Instrumentation for Whole Field Velocity and demonstrate the continuing and healthy interest in the development of understanding of the methodology and implementation in terms of new instru mentation. The prime objective of this Seventh Symposium was to provide a forum for the presen tation of the most advanced research on laser techniques for flow measurements, and communicate significant results to fluid mechanics. The applications oflaser techniques to scientific and engineering fluid flow research was emphasized, but contributions to the theory and practice of laser methods were also considered where they facilitate new improved fluid mechanic research. Attention was placed on laser-Doppler anemometry, particle sizing and other methods for the measurement of velocity and scalar, such as particle image velocimetry and laser induced fluorescence. We would like to take this opportunity to thank those who participated. The assistance provided by the Advisory Committee, by assessing abstracts was highly appreciated."
Investigation of vortex wakes behind various aircraft, especially behind wide bodied and heavy cargo ones, is of both scientific and practical in terest. The vortex wakes shed from the wing's trailing edge are long lived and attenuate only atdistances of10-12kmbehindthe wake generating aircraft. The encounter of other aircraft with the vortex wake of a heavy aircraft is open to catastrophic hazards. For example, air refueling is adangerous operationpartly due to thepossibility of the receiver aircraft's encountering the trailing wake of the tanker aircraft. It is very important to know the behavior of vortex wakes of aircraft during theirtakeoff andlanding operations whenthe wakes canpropagate over the airport's ground surface and be a serious hazard to other depart ing or arriving aircraft. This knowledge can help in enhancing safety of aircraft's movements in the terminal areas of congested airports where the threat of vortex encounters limits passenger throughput. Theoreticalinvestigations of aircraft vortex wakes arebeingintensively performedinthe major aviationnations.Usedforthispurpose are various methods for mathematical modeling of turbulent flows: direct numerical simulation based on the Navier-Stokes equations, large eddy simulation using the Navier-Stokes equations in combination with subrigid scale modeling, simulation based on the Reynolds equations closed with a differential turbulence model. These approaches are widely used in works of Russian and other countries' scientists. It should be emphasized that the experiments in wind tunnels and studies of natural vortex wakes behind heavy and light aircraft in flight experiments are equally important. |
You may like...
Emerging Technologies in Hydraulic…
Kenneth Imo-Imo Israel Eshiet, Rouzbeh G. Moghanloo
Hardcover
R2,584
Discovery Miles 25 840
Free-Surface Flow - Computational…
Nikolaos D. Katopodes
Paperback
Turbulence in Porous Media - Modeling…
Marcelo J. S. de Lemos
Hardcover
R3,974
Discovery Miles 39 740
Nanofluids and Mass Transfer
Mohammad Reza Rahimpour, Mohammad Amin Makarem, …
Paperback
R4,682
Discovery Miles 46 820
|