![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Detailing the major developments of the last decade, the Handbook of Hydraulic Fluid Technology, Second Edition updates the original and remains the most comprehensive and authoritative book on the subject. With all chapters either revised (in some cases, completely) or expanded to account for new developments, this book sets itself apart by approaching hydraulic fluids as a component of a system and focusing on key technological aspects. Written by experts from around the world, the handbook covers all major classes of hydraulic fluids in detail, delving into chemistry, design, fluid maintenance and selection, and other key concepts. It also offers a rigorous overview of hydraulic fluid technology and evaluates the ecological benefits of water and its use as an important alternative technology. This complete overview discusses pumps and motors, valves, and reservoir design, as well as fluid properties and associated topics. These include air entrainment, modulus, lubrication and wear assessment by bench and pump testing, biodegradability, and fire resistance. Contributors also present particularly important material on biodegradable fluids and the use of water as a hydraulic fluid. As the foremost resource on the design, selection, and testing of hydraulic systems and fluids used in engineering applications, this book contains new illustrations, data tables, and practical examples, all updated with essential information on the latest methods. To streamline presentation, relevant content from the first edition has been integrated into this new version, where appropriate. The result is a reference that helps readers develop an unparalleled understanding of the total hydraulic system, including essential hardware, fluid properties, and hydraulic lubricants.
Nearly all industrial processes require objects to be moved,
manipulated or subjected to some sort of force. Such movements and
manipulations are frequently accomplished by means of devices
driven by liquids (hydraulics) or air (pneumatics), the subject of
this book. Hydraulics and Pneumatics is written by a practicing
process control engineer as a guide to the successful operation of
hydraulic and pneumatic systems for all engineers and technicians
working with them. Keeping mathematics and theory to a minimum,
this practical guide is thorough but accessible to technicians
without an advanced engineering background, and offers clear,
complete coverage of the latest pumps, valves and other hydraulic
and pneumatic equipment Designed to serve as an introduction to
those who are training and a day-to-day reference for use on the
job, the book also offers an essential section on industrial safety
and compliance with regulation.
Explores the latest applications arising from the intersection of nanotechnology and microfluidics In the past two decades, microfluidics research has seen phenomenal growth, with many new and emerging applications in fields ranging from chemistry, physics, and biology to engineering. With the emergence of nanotechnology, microfluidics is currently undergoing dramatic changes, embracing the rising field of nanofluidics. This volume reviews the latest devices and applications stemming from the merging of nanotechnology with microfludics in such areas as drug discovery, bio-sensing, catalysis, electrophoresis, enzymatic reactions, and nanomaterial synthesis. Each of the ten chapters is written by a leading pioneer at the intersection of nanotechnology and microfluidics. Readers not only learn about new applications, but also discover which futuristic devices and applications are likely to be developed. Topics explored in this volume include: New lab-on-a-chip systems for drug delivery Integration of microfluidics with nanoneuroscience to study the nervous system at the single-cell level Recent applications of nanoparticles within microfluidic channels for electrochemical and optical affinity biosensing Novel microfluidic approaches for the synthesis of nanomaterials Next-generation alternative energy portable power devices References in each chapter guide readers to the primary literature for further investigation of individual topics. Overall, scientists, researchers, engineers, and students will not only gain a new perspective on what has been done, but also the nanotechnology tools they need to develop the next generation of microfluidic devices and applications. Microfluidic Devices for Nanotechnology is a two-volume publication, the first ever to explore the synergies between microfluidics and nanotechnology. The first volume covers fundamental concepts; this second volume examines applications.
This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.
This book is a brief introduction to the fundamental concepts of computational fluid dynamics (CFD). It is addressed to beginners, and presents the ABC's or bare essentials of CFD in their simplest and most transparent form. The approach taken is to describe the principal analytical tools required, including truncation-error and stability analyses, followed by the basic elements or building blocks of CFD, which are numerical methods for treating sources, diffusion, convection, and pressure waves. Finally, it is shown how those ingredients may be combined to obtain self-contained numerical methods for solving the full equations of fluid dynamics. The book should be suitable for self-study, as a textbook for CFD short courses, and as a supplement to more comprehensive CFD and fluid dynamics texts.
This volume offers a comprehensive examination of the subject of heat and mass transfer with nanofluids as well as a critical review of the past and recent research projects in this area. Emphasis is placed on the fundamentals of the transport processes using particle-fluid suspensions, such as nanofluids. The nanofluid research is examined and presented in a holistic way using a great deal of our experience with the subjects of continuum mechanics, statistical thermodynamics, and non-equilibrium thermodynamics of transport processes. Using a thorough database, the experimental, analytical, and numerical advances of recent research in nanofluids are critically examined and connected to past research with medium and fine particles as well as to functional engineering systems. Promising applications and technological issues of heat/mass transfer system design with nanofluids are also discussed. This book also: Provides a deep scientific analysis of nanofluids using classical thermodynamics and statistical thermodynamics to explain and interpret experimental observationsPresents the theory and experimental results for both thermodynamic and transport propertiesExamines all transport properties and transport processes as well as their relationships through the pertinent macroscopic coefficientsCombines recent knowledge pertaining to nanofluids with the previous fifty years of research on particulate flows, including research on transient flow and heat transfer of particulate suspensionsConducts an holistic examination of the material from more than 500 archival publications
This book provides state-of-art information on high-accuracy scientific computing and its future prospects, as applicable to the broad areas of fluid mechanics and combustion, and across all speed regimes. Beginning with the concepts of space-time discretization and dispersion relation in numerical computing, the foundations are laid for the efficient solution of the Navier-Stokes equations, with special reference to prominent approaches such as LES, DES and DNS. The basis of high-accuracy computing is rooted in the concept of stability, dispersion and phase errors, which require the comprehensive analysis of discrete computing by rigorously applying error dynamics. In this context, high-order finite-difference and finite-volume methods are presented. Naturally, the coverage also includes fundamental notions of high-performance computing and advanced concepts on parallel computing, including their implementation in prospective hexascale computers. Moreover, the book seeks to raise the bar beyond the pedagogical use of high-accuracy computing by addressing more complex physical scenarios, including turbulent combustion. Tools like proper orthogonal decomposition (POD), proper generalized decomposition (PGD), singular value decomposition (SVD), recursive POD, and high-order SVD in multi-parameter spaces are presented. Special attention is paid to bivariate and multivariate datasets in connection with various canonical flow and heat transfer cases. The book mainly addresses the needs of researchers and doctoral students in mechanical engineering, aerospace engineering, and all applied disciplines including applied mathematics, offering these readers a unique resource.
Contains Fluid Flow Topics Relevant to Every Engineer Based on the principle that many students learn more effectively by using solved problems, Solved Practical Problems in Fluid Mechanics presents a series of worked examples relating fluid flow concepts to a range of engineering applications. This text integrates simple mathematical approaches that clarify key concepts as well as the significance of their solutions, and fosters an understanding of the fundamentals encountered in engineering. Comprised of nine chapters, this book grapples with a number of relevant problems and asks two pertinent questions to extend understanding and appreciation: What should we look out for? and What else is interesting? This text can be used for exam preparation and addresses problems that include two-phase and multi-component flow, viscometry and the use of rheometers, non-Newtonian fluids, and applications of classical fluid flow principles. While the author incorporates terminology recognized by all students of engineering and provides a full understanding of the basics, the book is written for engineers who already have a rudimentary understanding and familiarity of fluid flow phenomena. It includes engineering concepts such as dimensionless numbers and requires a fluency in basic mathematical skills, such as differential calculus and the associated application of boundary conditions to reach solutions. Solved Practical Problems in Fluid Mechanics thoroughly explains the concepts and principles of fluid flow by highlighting various problems frequently encountered by engineers with accompanying solutions. This text can therefore help you gain a complete understanding of fluid mechanics and draw on your own practical experiences to tackle equally tricky problems.
As Computational Fluid Dynamics (CFD) and Computational Heat
Transfer (CHT) evolve and become increasingly important in standard
engineering design and analysis practice, users require a solid
understanding of mechanics and numerical methods to make optimal
use of available software. The Finite Element Method in Heat
Transfer and Fluid Dynamics, Third Edition illustrates what a user
must know to ensure the optimal application of computational
procedures?particularly the Finite Element Method (FEM)?to
important problems associated with heat conduction, incompressible
viscous flows, and convection heat transfer. This updated third edition features new or extended coverage of:
This volume showcases lecture notes collected from tutorials presented at the Workshop on Moving Interface Problems and Applications in Fluid Dynamics that was held between January 8 and March 31, 2007 at the Institute for Mathematical Sciences, National University of Singapore. As part of the program, these tutorials were conducted by specialists within their respective areas such as Robert Dillon, Zhilin Li, John Lowengrub, Frank Lu and Gretar Tryggvason.The topics in the program encompass modeling and simulations of biological flow coupled to deformable tissue/elastic structure, shock wave and bubble dynamics and various applications like biological treatments with experimental verification, multi-medium flow or multiphase flow and various applications including cavitation/supercavitation, detonation problems, Newtonian and non-Newtonian fluid, and many other areas.This volume benefits graduate students and researchers keen in the field of interfacial flows for application to physical and biological systems. Even beginners will find this volume a very useful starting point with many relevant references applicable.
This book examines the experiences of relatives of those accused or
convicted of serious crimes such as murder, manslaughter, rape and
sex offences. A broader literature exists on prisoners' families,
but few studies have looked specifically at those related to
serious offenders, or considered their experience other than as
prison visitors. Many of the difficulties faced by 'mundane'
prisoners' families are magnified for the relatives of serious
offenders, first by the length of sentence, and secondly by the
seriousness and stigmatizing impact through association of the
offence itself.
A study in the development of flow adaptive numerical schemes in computational hydraulics directed to enhancing modelling capabilities. Examples covered include additional flow resistance due to flexible vegetation; one-dimensional supercritical flow; and flow in networks of channels.
This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of thisworkshopis to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations. "
Modeling of Extreme Waves in Technology and Nature is a two-volume set, comprising Evolution of Extreme Waves and Resonances (Volume I) and Extreme Waves and Shock-Excited Processes in Structures and Space Objects (Volume II). The theory of waves is generalized on cases of extreme waves. The formation and propagation of extreme waves of various physical and mechanical nature (surface, elastoplastic, fracture, thermal, evaporation) in liquid and solid media, and in structural elements contacting with bubbly and cryogenic liquids are considered analytically and numerically. The occurrence of tsunamis, giant ocean waves, turbulence, and different particle-waves is described as resonant natural phenomena. Nonstationary and periodic waves are considered using models of continuum. The change in the state of matter is taken into account using wide-range determining equations. The desire for the simplest and at the same time general description of extreme wave phenomena that takes the reader to the latest achievements of science is the main thing that characterizes this book and is revolutionary for wave theory. A description of a huge number of observations, experimental data, and calculations is also given.
Instrumentation, Measurements, and Experiments in Fluids, Second Edition is primarily focused on essentials required for experimentation in fluids, explaining basic principles, and addressing the tools and methods needed for advanced experimentation. It also provides insight into the vital topics and issues associated with the devices and instruments used for fluid mechanics and gas dynamics experiments. The second edition adds exercise problems with answers, along with PIV systems of flow visualization, water flow channel for flow visualization, and pictures with Schlieren and shadowgraph-from which possible quantitative information can be extracted. Ancillary materials include detailed solutions manual and lecture slides for the instructors.
Computational Fluid-Structure Interaction: Methods and Applications takes the reader from the fundamentals of computational fluid and solid mechanics to the state-of-the-art in computational FSI methods, special FSI techniques, and solution of real-world problems. Leading experts in the field present the material using a unique approach that combines advanced methods, special techniques, and challenging applications. This book begins with the differential equations governing the fluid and solid mechanics, coupling conditions at the fluid solid interface, and the basics of the finite element method. It continues with the ALE and space time FSI methods, spatial discretization and time integration strategies for the coupled FSI equations, solution techniques for the fully-discretized coupled equations, and advanced FSI and space time methods. It ends with special FSI techniques targeting cardiovascular FSI, parachute FSI, and wind-turbine aerodynamics and FSI. Key features: * First book to address the state-of-the-art in computational FSI * Combines the fundamentals of computational fluid and solid mechanics, the state-of-the-art in FSI methods, and special FSI techniques targeting challenging classes of real-world problems * Covers modern computational mechanics techniques, including stabilized, variational multiscale, and space time methods, isogeometric analysis, and advanced FSI coupling methods * Is in full color, with diagrams illustrating the fundamental concepts and advanced methods and with insightful visualization illustrating the complexities of the problems that can be solved with the FSI methods covered in the book. * Authors are award winning, leading global experts in computational FSI, who are known for solving some of the most challenging FSI problems Computational Fluid-Structure Interaction: Methods and Applications is a comprehensive reference for researchers and practicing engineers who would like to advance their existing knowledge on these subjects. It is also an ideal text for graduate and senior-level undergraduate courses in computational fluid mechanics and computational FSI.
This book provides physical intuition and key entries to the ever-growing body of literature on turbulent reacting flows. It is of a tutorial nature and includes some historical perspective of the theories developed over the past 30 years. A selection of basic and advanced materials is used to build the necessary background and emphasize some of the main concepts that the student or newcomer to the field of turbulent reacting flows should know, thus facilitating further study of specialized research papers and research monographs. A range of exercises is also provided in order to consolidate the student's understanding.
Since antiquity, humanity has used engineering techniques to manage the transport and distribution of its most important resource fresh water. Population growth and climate change are making the good management of water resources ever more essential and this book focuses on advanced methods for the control of water flow in open-channel systems. Open-channel hydraulics are described by hyperbolic equations, derived from laws of conservation of mass and momentum, called Saint-Venant equations. In conjunction with hydraulic structure equations these are used to represent the dynamic behavior of water flowing in rivers, irrigation canals, transportation waterways and sewers. A lot of water is wasted because of poor management of such systems and automatic control has long been identified as a possible way to improve their operational management. Building on a detailed analysis of open-channel flow modeling, Modeling and Control of Hydrosystems constructs control design methodologies based on a frequency domain approach. The difficulty involved with rigorous design of boundary controllers for hyperbolic systems is well known but, in practice, many open-channel systems are controlled with classical input output controllers that are usually poorly tuned. The approach of this book, fashioning pragmatic engineering solutions for the control of open channels is given rigorous mathematical justification. Once the control objectives are clarified, a generic control design method is proposed, first for a canal pool, and then for a whole canal. The methods developed in the book have been validated on several canals of various dimensions, from experimental laboratory canals to a large scale irrigation canal. From the detailed analysis of realistic open-channel flow dynamics, and moving to the design of effective controllers, Modeling and Control of Hydrosystems will be of interest to control and civil engineers, and also to academics from both fields.
In this volume, designed for engineers and scientists working in the area of Computational Fluid Dynamics (CFD), experts offer assessments of the capabilities of CFD, highlight some fundamental issues and barriers, and propose novel approaches to overcome these problems. They also offer new avenues for research in traditional and non-traditional disciplines. The scope of the papers ranges from the scholarly to the practical. This book is distinguished from earlier surveys by its emphasis on the problems facing CFD and by its focus on non-traditional applications of CFD techniques. There have been several significant developments in CFD since the last workshop held in 1990 and this book brings together the key developments in a single unified volume.
Earthen levees are extensively used to protect the population and infrastructure from periodic floods and high water due to storm surges. The causes of failure of levees include overtopping, surface erosion, internal erosion, and slope instability. Overtopping may occur during periods of flooding due to insufficient freeboard. The most problematic situation involves the levee being overtopped by both surge and waves when the surge level exceeds the levee crest elevation with accompanying wave overtopping. Overtopping of levees produces fast-flowing, turbulent water velocities on the landward-side slope that can potentially damage the protective grass covering and expose the underlying soil to erosion. If overtopping continues long enough, the erosion may eventually result in loss of levee crest elevation and possibly breaching of the protective structure. Hence, protecting levees from erosion by surge overflow and wave overtopping is necessary to assure a viable and safe levee system. This book presents a cutting-edge approach to understanding overtopping hydraulics under negative free board of earthen levees, and to the study of levee reinforcing methods. Combining soil erosion test, full-scale laboratory overtopping hydraulics test, and numerical modeling for the turbulent overtopping hydraulics. It provides an analysis that integrates the mechanical and hydraulic processes governing levee overtopping occurrences and engineering approaches to reinforce overtopped levees. Topics covered: surge overflow, wave overtopping and their combination, full-scale hydraulic tests, erosion tests, overtopping hydraulics, overtopping discharge, and turbulent analysis. This is an invaluable resource for graduate students and researchers working on levee design, water resource engineering, hydraulic engineering, and coastal engineering, and for professionals in the field of civil and environmental engineering, and natural hazard analysis.
The second edition of this classic book delivers the most up to
date and comprehensive text available on computational fluid
dynamics for engineers and mathematicians. Already renowned for its
range and authority, this new edition has been significantly
developed in terms of both contents and scope. A complete, self
contained text, it will form the basis of study for many leading
CFD courses at senior undergraduate and graduate level: a truly
formidable resource covering the fundamentals of CFD.
In this concise yet comprehensive book, the author discusses the principles of mass, momentum, and energy transport, and derives balance equations for single-component fluids and multicomponent mixtures based on the direct application of natural laws and principles of thermodynamics. Transport equations over control volumes are formulated with reference to the Reynolds transport equation, thereby circumventing the need for ad-hoc balances for open systems that are best justified in hindsight. Notable features with regard to mass transport include the interpretation of diffusion in mixtures in terms of species parcel motion and separation, the introduction of Fick's and fractional diffusion laws with reference to random molecular excursions, a detailed account of species and mixture kinematics and dynamics, and the discussion of partial stresses, energies, and entropies of individual mixture components. Key features of this book include: * The governing equations are derived from first principles based on the application of natural laws and principles of thermodynamics * Balances over control volumes are derived from rigorous equations governing material parcel property evolution * Fick's law, a fractional diffusion law, and other diffusion laws are discussed with reference to random walks * A detailed account of species and mixture kinematics and dynamics is presented for binary and multicomponent solutions * A tabulated summary of transport equations is presented in differential and integral forms, and an overview of classical thermodynamics is given in an appendix for a self-contained discourse C. Pozrikidis has taught at the University of California and the University of Massachusetts. He is the author of several books on theoretical and computational topics in science and engineering, applied mathematics, scientific computing, and computer science.
The first of its kind in the field, this title examines the use of
modern, shock-capturing finite volume numerical methods, in the
solution of partial differential equations associated with
free-surface flows, which satisfy the shallow-water type assumption
(including shallow water flows, dense gases and mixtures of
materials as special samples).
Taking an engineering, rather than a mathematical, approach, Finite Element Methods for Flow Problems presents the fundamentals of stabilized finite element methods of the Petrov–Galerkin type developed as an alternative to the standard Galerkin method for the analysis of steady and time-dependent problems. The material presented here epitomizes the forefront of current research in several areas of computational fluid dynamics and combines theoretical aspects and practical applications. Coverage includes:
The book provides essential reading for graduate students and researchers in engineering and applied sciences in the finite element field. The book will also be of interest to professionals working in aerospace, automotive, civil, environmental and offshore engineering, and safety technology.
They were in a two-man race to break the sound barrier. It was October 1947, a time before high-speed digital computers, when predictions of what would happen to fighter planes at such speeds were nebulous. Chuck Yeager and George Welch, two great fighter pilots from World War II, were about to explore the unknown in the bright blue sky over the Mojave Desert. Aces Wild: The Race for Mach 1 is the story of these two courageous men who dueled to become the first to fly at supersonic speed, Mach 1, in an aircraft. The book attempts to set the record straight as to who actually broke the sound barrier first. One pilot, the more celebrated of the duo, is still alive today. Aces Wild also tells the story of the other aviator, George Welch, who lost his life in 1954 while once again flying beyond the technological wisdom of his day over the Mojave Desert. Aces Wild traces the story of fighter planes from the start of World War II at Pearl Harbor through the transition to jets in the 1950s. The author reveals the views of supersonic flight before and after 1947 by pilots, scientists, engineers, business interests, the government, and the media. This dramatic tale will appeal to aviation buffs and all readers, especially those who enjoyed Tom Wolfe's The Right Stuff. |
You may like...
The World According To Karl - The Wit…
Jean-Christophe Napias
Hardcover
(1)
Alexander McQueen: Fashion Icon
Editors of Createur Magazine
Hardcover
Chloe Catwalk - The Complete Collections
Lou Stoppard
Hardcover
|