Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Professional & Technical > Mechanical engineering & materials > Materials science > Mechanics of fluids
Modeling hydrologic changes and predicting their impact on watersheds is a dominant concern for hydrologists and other water resource professionals, civil and environmental engineers, and urban and regional planners. As such changes continue, it becomes more essential to have the most up-to-date tools with which to perform the proper analyses and modeling of the complex ecology, morphology, and physical processes that occur within watersheds. An application-oriented text, Modeling Hydrologic Change: Statistical Methods provides a step-by-step presentation of modeling procedures to help you properly analyze and model real-world data.
Since many processes in the food industry involve fluid flow and heat and mass transfer, Computational Fluid Dynamics (CFD) provides a powerful early-stage simulation tool for gaining a qualitative and quantitative assessment of the performance of food processing, allowing engineers to test concepts all the way through the development of a process or system. Published in 2007, the first edition was the first book to address the use of CFD in food processing applications, and its aims were to present a comprehensive review of CFD applications for the food industry and pinpoint the research and development trends in the development of the technology; to provide the engineer and technologist working in research, development, and operations in the food industry with critical, comprehensive, and readily accessible information on the art and science of CFD; and to serve as an essential reference source to undergraduate and postgraduate students and researchers in universities and research institutions. This will continue to be the purpose of this second edition. In the second edition, in order to reflect the most recent research and development trends in the technology, only a few original chapters are updated with the latest developments. Therefore, this new edition mostly contains new chapters covering the analysis and optimization of cold chain facilities, simulation of thermal processing and modeling of heat exchangers, and CFD applications in other food processes.
Stepped channel designs have been used for more than 3,500 years. A significant number of dams were built with overflow stepped spillways during the nineteenth and early twentieth centuries, before the design technique became outdated with the progresses in hydraulic jump stilling basin design. Recent advances in technology (e.g. RCC, polymer-coated gabion wire) have triggered a regain in interest for the stepped design, although much expertise had been lost in the last eighty years. The steps increase significantly the rate of energy dissipation taking place along the chute and reduce the size of the required downstream energy dissipation basin. Stepped cascades are used also in water treatment plants to enhance the air-water transfer of atmospheric gases (e.g. oxygen, nitrogen) and of volatile organic components (VOC). This book presents the state-of-the-art in stepped channel hydraulics. It is based upon the research expertise of the writer, his professional experience as an expert-consultant, and his experience in teaching stepped spillway hydraulics to undergraduate students, postgraduate research students and professionals since 1982. Results from more than forty-five laboratory studies and four prototype investigations were reanalyzed and compared, enabling the book to provide a new understanding of stepped channel hydraulics, aimed at both the research and professional communities.
This book provides a comprehensive discussion of the newest and best in the field of rock scour assessment due to falling high-velocity jets. It comprises the papers of a workshop organized to bring together engineers and scientists from all over the world to promote the exchange of knowledge on the complexities of the hydrodynamic-geotechnical scour problem. The workshop covered topics ranging from physical modelling to jet aeration and air entrainment in plunge pools as well as numerical modelling and protection measures. Some interesting case studies from around the world are also presented. This book is the first to bring together practical experience and theoretical understanding related to the latest scour evacuation methods. It will enhance future research and design activities as well as helping to improve safety of hydraulic structures and dams.
Environmental Fluid Mechanics provides comprehensive coverage of a combination of basic fluid principles and their application in a number of different situations-exploring fluid motions on the earth's surface, underground, and in oceans-detailing the use of physical and numerical models and modern computational approaches for the analysis of environmental processes. Environmental Fluid Mechanics covers novel scaling methods for a variety of environmental issues; equations of motion for boundary layers; hydraulic characteristics of open channel flow; surface and internal wave theory; the advection diffusion equation; sediment and associated contaminant transport in lakes and streams; mixed layer modeling in lakes; remediation; transport processes at the air/water interface; and more.
This book critically reexamines what turbulence really is, from a fundamental point of view and based on observations from nature, laboratories, and direct numerical simulations. It includes critical assessments and a comparative analysis of the key developments, their evolution and failures, along with key misconceptions and outdated paradigms. The main emphasis is on conceptual and problematic aspects, physical phenomena, observations, misconceptions and unresolved issues rather than on conventional formalistic aspects, models, etc. Apart from the obvious fundamental importance of turbulent flows, this emphasis stems from the basic premise that without corresponding progress in fundamental aspects there is little chance for progress in applications such as drag reduction, mixing, control and modeling of turbulence. More generally, there is also a desperate need to grasp the physical fundamentals of the technological processes in which turbulence plays a central role.
This monograph is devoted to the description of the physical fundamentals of laser refractography-a novel informational-measuring technique for the diagnostics of optically inhomogeneous media and flows, based on the idea of using spatially structured probe laser radiation in combination with its digital recording and c- puter techniques for the differential processing of refraction patterns. Considered are the physical fundamentals of this technique, actual optical schemes, methods of processing refraction patterns, and possible applications. This informational technique can be employed in such areas of science and technology as require remote nonperturbative monitoring of optical, thermophysical, chemical, aerohydrodynamic, and manufacturing processes. The monograph can also be recommended for students and postgraduates of - formational, laser, electro-optical, thermophysical, chemical, and other specialties. Laser refractography is a conceptually novel refraction method for the diagn- tics of inhomogeneous media, based on the idea of using spatially structured probe laser radiation in combination with its digital recording and computer techniques for the differential processing of refraction patterns.
This book covers aspects of multiphase flow and heat transfer during phase change processes, focusing on boiling and condensation in microscale channels. The authors present up-to-date predictive methods for flow pattern, void fraction, pressure drop, heat transfer coefficient and critical heat flux, pointing out the range of operational conditions that each method is valid. The first four chapters are dedicated on the motivation to study multiphase flow and heat transfer during phase change process, and the three last chapters are focused on the analysis of heat transfer process during boiling and condensation. During the description of the models and predictive methods, the trends are discussed and compared with experimental findings.
A discussion of the fundamental aspects of fluid flow phenomena in a jointed rock mass, as well as various geological (structural) features and their influence on flow deformation characteristics. Various types of laboratory triaxial apparatus used in testing are also highlighted.
A discussion of the fundamental aspects of fluid flow phenomena in a jointed rock mass, as well as various geological (structural) features and their influence on flow deformation characteristics. Various types of laboratory triaxial apparatus used in testing are also highlighted.
This book offers an essential introduction to the linear and non-linear behavior of solid materials, and to the concepts of deformation, displacement and stress, within the context of continuum mechanics and thermodynamics. To illustrate the fundamental principles, the book starts with an overview of solid mechanics, experimental methods, classes of material behaviors, and the thermodynamic modeling framework. It then explores linear elastic behavior, thermoelasticity, plasticity, viscoplasticity, fracture mechanics and damage behavior. The last part of the book is devoted to conventional and magnetic shape memory alloys, which may be used as actuators or sensors in adaptive structures. Given its range of coverage, the book will be especially valuable for students of engineering courses in Mechanics. Further, it includes a wealth of examples and exercises, making it accessible to the widest possible audience.
A classic from 1965, this book covers the main aspects of the theory of quantum liquids, including the elementary excitation spectrum, hydrodynamics, and kinetic phenomena. The book requires no special training and assumes only general knowledge of the fundamentals of theoretical physics. It was developed from studies at the Institute of Physical Problems of the U.S.S.R. Academy of Sciences and can be used as a guide for professors teaching quantum liquid theory or as a text for graduate students.
An analysis of polymer and composite rheology. This second edition covers flow properties of thermoplastic and thermoset polymers, and general principles and applications of all phases of polymer rheology, with new chapters on the rheology of particulate and fibre composites. It also includes new and expanded detail on polymer blends and emulsions, foams, reacting systems, and flow through porous media as well as composite processing operations.
Adopts a completely original approach to the study of processes of
mass transfer. In contrast to the usual approach, based on the
concept of continuum media and the theory of heat and mass
transfer, the topic is considered from a new viewpoint, taking into
account the heterogeneous dispersal state of porous bodies. The
author bases his discussion on the theory of surface forces and
microhydrodynamic analysis of the processes of mass transport of
gases, liquids and vapors, providing the reader with a systematic
account of liquid/solid and gas/solid interfaces.
Accuracy in the laboratory setting is key to maintaining the integrity of scientific research. Inaccurate measurements create false and non-reproducible results, rendering an experiment or series of experiments invalid and wasting both time and money. This handy guide to solid, fluid, and thermal measurement helps minimize this pitfall through careful detailing of measurement techniques. Concise yet thorough, Mechanical Variables Measurement-Solid, Fluid, and Thermal describes the use of instruments and methods for practical measurements required in engineering, physics, chemistry, and the life sciences. Organized according to measurement problem, the entries are easy to access. The articles provide equations to assist engineers and scientists who seek to discover applications and solve problems that arise in areas outside of their specialty. Sections include references to more specialized publications for advanced techniques, as well. It offers instruction for a range of measuring techniques, basic through advanced, that apply to a broad base of disciplines. As an engineer, scientist, designer, manager, researcher, or student, you encounter the problem of measurement often and realize that doing it correctly is pivotal to the success of an experiment. This is the first place to turn when deciding on, performing, and troubleshooting the measurement process. Mechanical Variables Measurement-Solid, Fluid, and Thermal leads the reader, step-by-step, through the straits of experimentation to triumph.
A unified treatment of cavitation, a phenomenon which extends across the boundaries of many fields. The approach is wide-ranging and the aim is to give due consideration to the many aspects of cavitation in proportion to their importance. Particular attention is paid to the diverse situations in which cavitation occurs and to its practical implications. The material includes basic hydrodynamical and acoustical theory, as well as experimental findings in physics, chemistry and biology laboratories. Cavitation-related phenomena covered include such diverse examples as erosion of ship propellers, ultrasonic cleaning, detection of high energy particles, fragmentation of biological cells and sonoluminescence.
With the appearance and fast evolution of high performance
materials, mechanical, chemical and process engineers cannot
perform effectively without fluid processing knowledge. The purpose
of this book is to explore the systematic application of basic
engineering principles to fluid flows that may occur in fluid
processing and related activities.
Hamiltonian fluid dynamics and stability theory work hand-in-hand in a variety of engineering, physics, and physical science fields. Until now, however, no single reference addressed and provided background in both of these closely linked subjects. Introduction to Hamiltonian Fluid Dynamics and Stability Theory does just that-offers a comprehensive introduction to Hamiltonian fluid dynamics and describes aspects of hydrodynamic stability theory within the context of the Hamiltonian formalism. The author uses the example of the nonlinear pendulum-giving a thorough linear and nonlinear stability analysis of its equilibrium solutions-to introduce many of the ideas associated with the mathematical argument required in infinite dimensional Hamiltonian theory needed for fluid mechanics. He examines Andrews' Theorem, derives and develops the Charney-Hasegawa-Mima (CMH) equation, presents an account of the Hamiltonian structure of the Korteweg-de Vries (KdV) equation, and discusses the stability theory associated with the KdV soliton. The book's tutorial approach and plentiful exercises combine with its thorough presentations of both subjects to make Introduction to Hamiltonian Fluid Dynamics and Stability Theory an ideal reference, self-study text, and upper level course book.
Environmental Fluid Mechanics (EFM) studies the motion of air and water at several different scales, the fate and transport of species carried along by these fluids, and the interactions among those flows and geological, biological, and engineered systems. EFM emerged some decades ago as a response to the need for tools to study problems of flow and transport in rivers, estuaries, lakes, groundwater and the atmosphere; it is a topic of increasing importance for decision makers, engineers, and researchers alike. The second edition of the successful textbook "Fluid Mechanics of Environmental Interfaces" is still aimed at providing a comprehensive overview of fluid mechanical processes occurring at the different interfaces existing in the realm of EFM, such as the air-water interface, the air-land interface, the water-sediment interface, the surface water-groundwater interface, the water-vegetation interface, and the water-biological systems interface. Across any of these interfaces mass, momentum, and heat are exchanged through different fluid mechanical processes over various spatial and temporal scales. In this second edition, the unique feature of this book, considering all the topics from the point of view of the concept of environmental interface, was maintained while the chapters were updated and five new chapters have been added to significantly enlarge the coverage of the subject area. The book starts with a chapter introducing the concept of EFM and its scope, scales, processes and systems. Then, the book is structured in three parts with fifteen chapters. Part one, which is composed of four chapters, covers the processes occurring at the interfaces between the atmosphere and the surface of the land and the seas, including the transport of dust and the dispersion of passive substances within the atmosphere. Part two deals in five chapters with the fluid mechanics at the air-water interface at small scales and sediment-water interface, including the advective diffusion of air bubbles, the hyporheic exchange and the tidal bores. Finally, part three discusses in six chapters the processes at the interfaces between fluids and biotic systems, such as transport processes in the soil-vegetation-lower atmosphere system, turbulence and wind above and within the forest canopy, flow and mass transport in vegetated open channels, transport processes to and from benthic plants and animals and coupling between interacting environmental interfaces. Each chapter has an educational part, which is structured in four sections: a synopsis of the chapter, a list of keywords that the reader should have encountered in the chapter, a list of questions and a list of unsolved problems related to the topics covered by the chapter. The book will be of interest to graduate students and researchers in environmental sciences, civil engineering and environmental engineering, (geo)physics, atmospheric science, meteorology, limnology, oceanography, and applied mathematics.
Since Prandtl first suggested it in 1904, boundary layer theory has become a fundamental aspect of fluid dynamics. Although a vast literature exists for theoretical and experimental aspects of the theory, for the most part, mathematical studies can be found only in separate, scattered articles. Mathematical Models in Boundary Layer Theory offers the first systematic exposition of the mathematical methods and main results of the theory. Beginning with the basics, the authors detail the techniques and results that reveal the nature of the equations that govern the flow within boundary layers and ultimately describe the laws underlying the motion of fluids with small viscosity. They investigate the questions of existence and uniqueness of solutions, the stability of solutions with respect to perturbations, and the qualitative behavior of solutions and their asymptotics. Of particular importance for applications, they present methods for an approximate solution of the Prandtl system and a subsequent evaluation of the rate of convergence of the approximations to the exact solution. Written by the world's foremost experts on the subject, Mathematical Models in Boundary Layer Theory provides the opportunity to explore its mathematical studies and their importance to the nonlinear theory of viscous and electrically conducting flows, the theory of heat and mass transfer, and the dynamics of reactive and muliphase media. With the theory's importance to a wide variety of applications, applied mathematicians-especially those in fluid dynamics-along with engineers of aeronautical and ship design will undoubtedly welcome this authoritative, state-of-the-art treatise.
This book offers timely insights into research on numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications. It reports on findings by members of the STAB (German Aerospace Aerodynamics Association) and DGLR (German Society for Aeronautics and Astronautics) and covers both nationally and EC-funded projects. Continuing on the tradition of the previous volumes, the book highlights innovative solutions, promoting translation from fundamental research to industrial applications. It addresses academics and professionals in the field of aeronautics, astronautics, ground transportation, and energy alike.
The Microfluidics and Nanofluidics Handbook: Two-Volume Set comprehensively captures the cross-disciplinary breadth of the fields of micro- and nanofluidics, which encompass the biological sciences, chemistry, physics and engineering applications. To fill the knowledge gap between engineering and the basic sciences, the editors pulled together key individuals, well known in their respective areas, to author chapters that help graduate students, scientists, and practicing engineers understand the overall area of microfluidics and nanofluidics. Topics covered include Cell Lysis Techniques in Lab-on-a-Chip Technology Electrodics in Electrochemical Energy Conversion Systems: Microstructure and Pore-Scale Transport Microscale Gas Flow Dynamics and Molecular Models for Gas Flow and Heat Transfer Microscopic Hemorheology and Hemodynamics Covering physics and transport phenomena along with life sciences and related applications, Volume One: Chemistry, Physics, and Life Science Principles provides readers with the fundamental science background that is required for the study of microfluidics and nanofluidics. Both volumes include as much interdisciplinary knowledge as possible to reflect the inherent nature of this area, valuable to students and practitioners.
This textbook highlights the theory of fractional calculus and its wide applications in mechanics and engineering. It describes in details the research findings in using fractional calculus methods for modeling and numerical simulation of complex mechanical behavior. It covers the mathematical basis of fractional calculus, the relationship between fractal and fractional calculus, unconventional statistics and anomalous diffusion, typical applications of fractional calculus, and the numerical solution of the fractional differential equation. It also includes latest findings, such as variable order derivative, distributed order derivative and its applications. Different from other textbooks in this subject, the book avoids lengthy mathematical demonstrations, and presents the theories in close connection to the applications in an easily readable manner. This textbook is intended for students, researchers and professionals in applied physics, engineering mechanics, and applied mathematics. It is also of high reference value for those in environmental mechanics, geotechnical mechanics, biomechanics, and rheology.
C Specific heat at constant pressure p D Displacement field D Diffusion coefficient d D Orifice diameter E Electric field E Electron charge F Force G Acceleration due to gravity I Current J Current flux K Conductivity k Boltzmann constant B L Atomizer geometry: length from electrode tip to orifice plane i L Atomizer geometry : length of orifice channel o P Polarization Q Flow rate/Heat flux Q Charge r Atomizer geometry : electrode tip radius p T Time T Temperature U Velocity V Voltage W Energy X Distance Nomenclature (Greek) Thermal expansion coefficient ? Permittivity ? Permutation operator ? ijk Ion mobility ? VI Nomenclature Debye length ? D ? Dynamic viscosity ? Mass density Surface tension ? T Electrical conductivity ? ? Timescale ? Vorticity Nomenclature (Subscripts) Reference state ? o Cartesian tensor notation ? ijk Volume density (? per unit volume) ? v Surface density (? per unit area) ? s Linear density (? per unit length) ? l 'critical' state ? c Bulk mean injection ? inj Nomenclature (Superscripts) Time or ensemble averaged ? Contents Contents 1 Introduction................................................................... 1 1.1 Introduction and Scope.................................................. 1 1.2 Organization.............................................................. 3 2 Electrostatics, Electrohydrodynamic Flow, Coupling and Instability.................................................................. 5 2.1 Electrostatics.............................................................. 5 2.1.1 The Coulomb Force............................................. 5 2.1.2 Permittivity...................................................... 6 2.1.3 Conductors, Insulators, Dielectrics and Polarization........ 6 2.1.4 Gauss's Law...................................................... 8 2.2 Mobility and Charge Transport........................................ 10 2.2.1 Introduction...................................................... 10 |
You may like...
Selected Articles on the Fortification…
Clara Elizabeth Fanning
Hardcover
R680
Discovery Miles 6 800
Hypersonic Vehicles - Past, Present and…
Giuseppe Pezzella, Antonio Viviani
Hardcover
Message From the Governor - Accompanied…
Pennsylvania Board of Canal Commissi
Hardcover
R958
Discovery Miles 9 580
The 1915 Mode as Shown by Paris, Panama…
Panama-Pacific International Exposition
Hardcover
R758
Discovery Miles 7 580
Solving Problems in Fluid Mechanics…
J.F. Douglas, R D Matthews
Paperback
R2,377
Discovery Miles 23 770
|