![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
This volume contains a selection of papers presented at the 10th European Workshop on Quantum Systems in Chemistry and Physics, held in Tunisia, from September 1st to 7th, 2005. The workshop's aim was to bring together chemists and physicists with a common interest in the quantum-mechanical many-body problem. The volume offers unique insights into the fields of quantum chemical methods, molecular structure and spectroscopy, complexes and clusters.
The dynamics of nuclear structures described in this book furnish the basis for a comprehensive understanding of how the higher-order organization and function of the nucleus is established and how it correlates with the expression of a variety of vital activities such as cell proliferation and differentiation. The resulting volume creates an invaluable source of reference for researchers in the field.
I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like "the velocity of the electrons in atoms is ?1% of the velocity of light", a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work.This is an open access book.
The field of nuclear medicine is expanding rapidly, with the development of exciting new diagnostic methods and treatments. This growth is closely associated with significant advances in radiation physics. In this book, acknowledged experts explain the basic principles of radiation physics in relation to nuclear medicine and examine important novel approaches in the field. The first section is devoted to what might be termed the "building blocks" of nuclear medicine, including the mechanisms of interaction between radiation and matter and Monte Carlo codes. In subsequent sections, radiation sources for medical applications, radiopharmaceutical development and production, and radiation detectors are discussed in detail. New frontiers are then explored, including improved algorithms for image reconstruction, biokinetic models, and voxel phantoms for internal dosimetry. Both trainees and experienced practitioners and researchers will find this book to be an invaluable source of up-to-date information.
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems and in particular to nuclear physics.A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spectroscopy and structure, many-body systems, together with more topical lectures in nuclear physics aimed a providing a broad phenomenological background. Exercises to encourage hands-on experience with parallel computing and data analysis are included."
Currently under construction in Northern Chile, the Atacama Large Millimeter Array (ALMA) is the most ambitious astronomy facility under construction. This book describes the enormous capabilities of ALMA, the state of the project, and most notably the scientific prospects of such a unique facility. The book includes reviews and recent results on most hot topics of modern astronomy. It looks forward to the revolutionary results that are likely to be obtained with ALMA.
This monograph recounts and details the development of a nuclear rocket engine reactor (NRER). In particular, it explains the working capacity of an active zone NRER under mechanical and thermal load, intensive neutron fluxes, and high-energy generation (up to 30 MBT/l) in a working medium (hydrogen) at temperatures up to 3100 K. The design principles and bearing capacity of reactors area discussed on the basis of simulation experiments and test data of a prototype reactor. Property data of dense constructional, porous thermal insulating and fuel materials such as carbide and uranium carbide compounds in the temperatures interval 300 - 3000 K are presented.; technological aspects of strength and thermal strength resistance of materials are also considered. As well, a procedure to design possible emergency processes in the NRER is developed and risks for their origination are evaluated. Finally, prospects for use in pilotless space devices and piloted interplanetary ships are reviewed.
This book introduces systematically the operator method for the solution of the Schroedinger equation. This method permits to describe the states of quantum systems in the entire range of parameters of Hamiltonian with a predefined accuracy. The operator method is unique compared with other non-perturbative methods due to its ability to deliver in zeroth approximation the uniformly suitable estimate for both ground and excited states of quantum system. The method has been generalized for the application to quantum statistics and quantum field theory. In this book, the numerous applications of operator method for various physical systems are demonstrated. Simple models are used to illustrate the basic principles of the method which are further used for the solution of complex problems of quantum theory for many-particle systems. The results obtained are supplemented by numerical calculations, presented as tables and figures.
Proceedings of the International Symposium on the Industrial Applications of the Moessbauer Effect (ISIAME 2008) held in Budapest, Hungary, 17-22 August 2008 E. Kuzmann and K. Lazar (Eds.) This book provides an excellent overview on the most recent results on the industrial applications of Moessbauer spectroscopy attained on the fields of nanotechnology, metallurgy, biotechnology and pharmaceutical industry, applied mineralogy, energy production industry (coal, oil, nuclear, solar, etc.), computer industry, space technology, electronic and magnetic devices technology, ion implantation technology, including topics like characterization of novel construction materials, electronic components and magnetic materials, composite materials, colloids, amorphous and nanophase materials, small particles, coatings, interfaces, thin films and multilayers, catalysis, corrosion, tribology, surface modification, hydrogen storage, ball milling, radiation effects, electrochemistry, batteries, etc. From the various reports a broad overview emerges illustrating that the method can successfully be applied in a wide variety of topics.
There is a growing need in both industrial and academic research to obtain accurate quantitative results from continuous wave (CW) electron paramagnetic resonance (EPR) experiments. This book describes various sample-related, instrument-related and software-related aspects of obtaining quantitative results from EPR expe- ments. Some speci?c items to be discussed include: selection of a reference standard, resonator considerations (Q, B ,B ), power saturation, sample position- 1 m ing, and ?nally, the blending of all the factors together to provide a calculation model for obtaining an accurate spin concentration of a sample. This book might, at ?rst glance, appear to be a step back from some of the more advanced pulsed methods discussed in recent EPR texts, but actually quantitative "routine CW EPR" is a challenging technique, and requires a thorough understa- ing of the spectrometer and the spin system. Quantitation of CW EPR can be subdivided into two main categories: (1) intensity and (2) magnetic ?eld/mic- wave frequency measurement. Intensity is important for spin counting. Both re- tive intensity quantitation of EPR samples and their absolute spin concentration of samples are often of interest. This information is important for kinetics, mechanism elucidation, and commercial applications where EPR serves as a detection system for free radicals produced in an industrial process. It is also important for the study of magnetic properties. Magnetic ?eld/microwave frequency is important for g and nuclear hyper?ne coupling measurements that re?ect the electronic structure of the radicals or metal ions.
Proceedings of the International Conferences EXA'08 (Exotic Atoms and Related Topics) and LEAP'08 (Low Energy Antiproton Physics) held from September 15th to 19th, 2008 in Vienna and hosted by the Stefan Meyer Institute for Subatomic Physics of the Austrian Academy of Sciences. Now the research in exotic atoms has a remarkable history of more than 50 years. Enormous success in the understanding of fundamental interactions and symmetries resulted from the research on these tiny objects at the femtoscale. This volume contains research papers on recent achievements and future opportunities of this highly interdisciplinary field of atomic, nuclear, and particle physics. The Proceedings are structured according to the conference session topics: exotic atoms, kaon-nucleon interaction, exotic decays, fundamental symmetries, particle trapping, antiproton collisions and antihydrogen, muon physics, nuclear physics with antiprotons, charm physics, baryons bound in nuclei, hadron and nuclear physics with antiprotons, new facilities and new ideas. Therefore, this volume represents a compilation of the most recent developments and new perspectives in the light of the upcoming research facilities (FAIR, J-PARC) and technologies. It is directed to researchers in the field and advanced students.
Offers basic data on more than 3,600 radionuclides. Emphasizes practical application such as basic research, acheo0logy and dating, medical radiology and industrial. Balanced and informative details on the biological effects of radiation and resultant controversy. Trimmed down student version of a product that costs many times the price.
Due to the rapid progress in laser technology a wealth of novel fundamental and applied applications of lasers in atomic and plasma physics have become possible. This book focuses on the interaction of high intensity lasers with matter. It reviews the state of the art of high power laser sources, intensity laser-atom and laser-plasma interactions, laser matter interaction at relativistic intensities, and QED with intense lasers.
This book is a comprehensive account of a large class of models used to describe the observed particles and the restoration of chiral symmetry at high temperatures and densities. This book enables a reader with only an elementary knowledge of quantum mechanics and field theory, to understand and master the modern techniques used to study the quark structure of hadrons, solitons and their collective rotations in flavour space. The style is pedagogical and will be extremely useful for doctoral students who would like to learn the techniques used in present day research.
The hydrogen bond represents an important interaction between molecules, and the dynamics of hydrogen bonds in water create an ever-present question associated with the process of chemical and biological reactions. In spite of numerous studies, the process remains poorly understood at the microscopic level because hydrogen-bond dynamics, such as bond rearrangements and hydrogen/proton transfer reactions, are extremely difficult to probe. Those studies have been carried out by means of spectroscopic methods where the signal stems from the ensemble of a system and the hydrogen-bond dynamics were inferred indirectly. This book addresses the direct imaging of hydrogen-bond dynamics within water-based model systems assembled on a metal surface, using a scanning tunneling microscope (STM). The dynamics of individual hydrogen bonds in water clusters, hydroxyl clusters, and water-hydroxyl complexes are investigated in conjunction with density functional theory. In these model systems, quantum dynamics of hydrogen bonds, such as tunneling and zero-point nuclear motion, are observed in real space. Most notably, hydrogen atom relay reactions, which are frequently invoked across many fields of chemistry, are visualized and controlled by STM. This work presents a means of studying hydrogen-bond dynamics at the single-molecule level, providing an important contribution to wide fields beyond surface chemistry.
The topics treated in this volume are intermediate and high-energy nuclear physics with real and virtual photons and the interplay between nuclear and particle physics. The first part, devoted to vector mesons, is also intended to explore the scientific perspectives of a new generation of electron accelerators. The second part is devoted to physics currently under study at intermediate-energy real-photon facilities with some emphasis on the Compton effect and its relation to quark models.
Atomic cluster physics has evolved into a research field of truly interdisciplinary character. In particular, it has become apparent that phenomena in atomic nuclei have many analogues in atomic clusters. Increasing the interaction between nuclear and cluster physics can thereforeact as stimulus for both communities. The volume contains the Proceedings of a WE-Heraeus workshop on "Nuclear Physics Concepts inAtomic Cluster Physics" held in Bad Honnef (Germany), November 26-29, 1991. Both theoretical and experimental methods and results are discussed in detail, thus providing the first systematic account of the intimate connections between both fields.
This monograph teaches advanced undergraduate students and practitioners how to use folded diagrams to calculate properties of complex particle systems such as atomic nuclei, atoms and molecules in terms of interactions among their constituents. Emphasis is on systems with valence particles in open shells. Detailed diagram rules are derived and illustrated by simple examples. Applications include nuclear optical model potentials, meson-exchange theory of the nucleon-nucleon interactions and molecular-structure problems.
This book provides a concise introduction to the newly created sub-discipline of solid state physics isotopetronics. The role of isotopes in materials and their properties are describe in this book. The problem of the enigma of the atomic mass in microphysics is briefly discussed. The range of the applications of isotopes is wide: from biochemical process in living organisms to modern technical applications in quantum information. Isotopetronics promises to improve nanoelectronic and optoelectronic devices. With numerous illustrations this book is useful to researchers, engineers and graduate students.
Principles and Applications of ESR Spectroscopy fills the gap between the detailed monographs in ESR spectroscopy and the general textbooks in molecular physics, physical chemistry, biochemistry or spectroscopy. The latter only briefly explain the underlying theory and do not provide details about applications, while the currently available ESR textbooks are primarily focused on the technique as such. This text is based upon the authors' long experience of teaching the subject to a mixed audience, in the extreme case ranging from physics to biology. The potential of the method is illustrated with applications in fields such as molecular science, catalysis and environmental sciences, polymer and materials sciences, biochemistry and radiation chemistry/physics. Theoretical derivations have in general been omitted, as they have been presented repeatedly in previous works. The necessary theory is instead illustrated by practical examples from the literature.
Nuclear reactions at energies near and below the Coulomb barrier have found much interest since unexpectedly large cross sections of fusion for heavy ions were discovered around 1980. This book covers the more important experimental and theoretical aspects such as sub-barrier fusion, sub- and near-barrier transfer, couplings of various reaction channels, neck-formation, the threshold anomaly, spin distributions and fusion of polarized ions. The symposium also included a session devoted to mass spectrometry for fast reaction products.
This is a comprehensive overview of the information yielded by electroweak probes about the nuclear- and subnuclear-scale structure of matter. Lepton-induced processes from low energy through to the highest energies are considered. The first three lectures review electromagneticprocesses in hadrons; others cover the properties of partons, the behaviour of the constituents of the hadron, muon and neutrino scattering etc. An introduction to electroweak theory including the status of precision tests and data analyses is given along with a report on the first results from HERA. The lecturers have endeavoured to achieve a balance between scientific and didactic aspects thus making the book accessible also to students of nuclear and particle physics.
Stability and Transport in Magnetic Confinement Systems provides an advanced introduction to the fields of stability and transport in tokamaks. It serves as a reference for researchers with its highly-detailed theoretical background, and contains new results in the areas of analytical nonlinear theory of transport using kinetic theory and fluid closure. The use of fluid descriptions for advanced stability and transport problems provide the reader with a better understanding of this topic. In addition, the areas of nonlinear kinetic theory and fluid closure gives the researcher the basic knowledge of a highly relevant area to the present development of transport physics.
In the present volume and in the preceding one we have stretched our normal pattern of reviews by including articles of more major proportions than any we have published before. As a consequence each of these two vol umes contains only three review articles. From the beginning of this series it has been our aim, as editors, to achieve variation in the scope, style, and length of individual articles sufficient to match the needs of the individual topic, rather than to restrain the authors within rigid limits. We feel that the two major articles of Vols. 5 and 6 are entirely justified and do not repre sent unnecessary exuberance on the part of the authors. The article by Michaudon on fission is the first comprehensive account of the developments in this subject, which have placed it in the center of the stage of nuclear physics during the past few years. The discovery of fission isomerism and its dramatic manifestations in the intermediate structure of the neutron cross sections for fissionable isotopes are among the most im portant and interesting events to occur in nuclear physics. These events came as a surprise, and reaffirmed that the strength of nuclear physics lies in the combination of ingenious experiments with simple ideas.
The book is an expanded autobiography of the famous theoretical physicist Isaak Khalatnikov. He worked together with L.D. Landau at the Institute for Physical Problems lead by P.L. Kapitza. He is the co-author of L.D. Landau in a number of important works. They worked together in the frame of the so-called Nuclear Bomb Project. After the death of L.D. Landau, I.M. Khalatnikov initiated the establishment of the Institute for Theoretical Physics, named in honour of L.D. Landau, within the USSR Academy of Sciences. He headed this institute from the beginning as its Director. The institute inherited almost all traditions of the Landau scientific school and played a prominent role in the development of theoretical physics. So, this is a story about how the institute was created, how it worked, and about the life of the physicists in the "golden age" of the Soviet science. A separate chapter is devoted to todays life of the institute and the young generation of physicists working now in science. It is an historically interesting book on the development of Soviet and Russian science and presents the background of the Soviet nuclear bomb program in the cold war age. In war times, Khalatnikov was a chief of the military staff of nuclear research. He writes about the internal conditions of Soviet society, the way of operating of the Soviet authorities and ways for scientists to interact with them. It gives many interesting insights into the development of superconductivity and superfluidity. The book is written by the most experienced and best informed person among the few living Russian scientists in the environment of Landau. Many stories of the book were never published before and considered as "top secret". |
![]() ![]() You may like...
Recent Techniques and Applications in…
Ahmed M. Maghraby, Basim Almayyahi
Hardcover
R3,328
Discovery Miles 33 280
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R83,942
Discovery Miles 839 420
Resonance Self-Shielding Calculation…
Liangzhi Cao, Hongchun Wu, …
Paperback
R4,998
Discovery Miles 49 980
Nuclear Density Functional Theory
I.Zh. Petkov, M.V. Stoitsov
Hardcover
R3,841
Discovery Miles 38 410
Radioactivity - History, Science, Vital…
Michael F. L'Annunziata
Hardcover
Sustainability of Life Cycle Management…
Rehab O. Abdel Rahman, Michael I. Ojovan
Paperback
R5,004
Discovery Miles 50 040
|