![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
This volume is published in honor of Friedrich Hund's 100th birthday. It is a modern review on matter at high densities and pressures in astrophysics from Hund's early contribution to present-day ideas. The relation between the equation of state and the structure of compact cosmic objects is discussed, and two main contributions deal with the equation of state of baryonic matter at nuclear densities and with the numerical solution of the general relativistic field equations for non-rotating and rapidly rotating neutron stars. In a final chapter the present state of asteroseismology is presented as a tool to explore the interior of cosmic objects by analyzing the observed free oscillations of the Earth, the Sun, and white dwarf stars.
Micro/nanotribology as a field is concerned with experimental and theoretical investigations of processes ranging from atomic and molecular scales to the microscale, occurring during adhesion, friction, wear, and thin-film lubrication at sliding surfaces. As a field it is truly interdisciplinary, but this confronts the would-be entrant with the difficulty of becoming familiar with the basic theories and applications: the area is not covered in any undergraduate or graduate scientific curriculum. The present work commences with a history of tribology and micro/nanotribology, followed by discussions of instrumentation, basic theories of friction, wear and lubrication on nano- to microscales, and their industrial applications. A variety of research instruments are covered, including a variety of scanning probe microscopes and surface force apparatus. Experimental research and modelling are expertly dealt with, the emphasis throughout being applied aspects.
techniques, and raises new issues of physical interpretation as well as possibilities for deepening the theory. (3) Barut contributes a comprehensive review of his own ambitious program in electron theory and quantum electrodynamics. Barut's work is rich with ingenious ideas, and the interest it provokes among other theorists can be seen in the cri tique by Grandy. Cooperstock takes a much different approach to nonlinear field-electron coupling which leads him to conclusions about the size of the electron. (4) Capri and Bandrauk work within the standard framework of quantum electrodynamics. Bandrauk presents a valuable review of his theoretical approach to the striking new photoelectric phenomena in high intensity laser experiments. (5) Jung proposes a theory to merge the ideas of free-free transitions and of scattering chaos, which is becoming increasingly important in the theoretical analysis of nonlinear optical phenomena. For the last half century the properties of electrons have been probed primarily by scattering experiments at ever higher energies. Recently, however, two powerful new experimental techniques have emerged capable of giving alternative experimental views of the electron. We refer to (1) the confinement of single electrons for long term study, and (2) the interaction of electrons with high intensity laser fields. Articles by outstanding practitioners of both techniques are included in Part II of these Proceedings. The precision experiments on trapped electrons by the Washington group quoted above have already led to a Nobel prize for the most accurate measurements of the electron magnetic moment.
This volume focuses on the human exposures and medical effects studies in the SemipaiatinskJ Altai region of Siberia that were a consequence of the radioactive fallout from nuclear test explosions that took place at the Semipalatinsk Test Site of the former Soviet Union. It contains a detailed account of a NATO Advanced Research Workshop (ARW) devoted to the subject, and a selection of the papers presented. The title of the ARW was "Long-term Consequences of Nuclear Tests for the Environment and Population Health (SemipaiatinskJAltai Case Studies)." The estimated exposures to large numbers of people in the Altai lie in an important dose rate and dose domain. Hence the research reported herein provides new and unique information on the effects of radiation on humans. Also emphasized at the ARW were studies involving fallout from the Pacific Island tests of the U. S. A . . There have been over 2300 nuclear weapon test explosions to date. More than 500 took place in the atmosphere and outer space; the remainder were underground. The atmospheric tests comprise the largest source of anthropogenic radioactivity released into the earth's atmosphere to date. The vast majority, in number and yield, were carried out by the former Soviet Union (FSU) and the United States. Each superpower maintained two primary test sites, one continental primarily for small yield tests, and the other more remote for larger yield tests. For the U. S. A.
The first presentation of the novel interdisciplinary optical remote sensing technique for various ionized diluted media, based on the collisional polarization of the spectoral emission. The book provides a methodology of the impact spectropolarimetic sensing of many solutions to many practical diagnostic problems.
Recombination lines at radio wavelengths have been - and still are - a pow erful tool for modern astronomy. For more than thirty years they have allowed astronomers to probe the gases from which stars form. They have even been detected in the Sun. In addition, observations of these spectral lines facilitate basic research into the atom, in forms and environments that can only exist in the huge dimensions and extreme conditions of cosmic laboratories. We intend this book to serve as a tourist's guide to the world of Radio Recombination Lines. It contains three divisions: a history of their discovery, the physics of how they form and how their voyage to us influences their spectral profiles, and a description of their many astronomical contributions to date. The appendix includes supplementary calculations that may be useful to some astronomers. This material also includes tables of line frequencies from 12 MHz to 30THz (AlOJLm) as well as FORTRAN computer code to calculate the fine structure components of the lines, to evaluate radial matrix integrals, and to calculate the departure coefficients of hydrogen in a cosmic environment. It also describes how to convert observational to astrophysical units. The text includes extensive references to the literature to assist readers who want more details.
Since the early days of modem physics spectroscopic techniques have been employed as a powerful tool to assess existing theoretical models and to uncover novel phenomena that promote the development of new concepts. Conventionally, the system to be probed is prepared in a well-defined state. Upon a controlled perturbation one measures then the spectrum of a single particle (electron, photon, etc.) emitted from the probe. The analysis of this single particle spectrum yields a wealth of important information on the properties of the system, such as optical and magnetic behaviour. Therefore, such analysis is nowadays a standard tool to investigate and characterize a variety of materials. However, it was clear at a very early stage that real physical compounds consist of many coupled particles that may be excited simultaneously in response to an external perturbation. Yet, the simultaneous (coincident) detection of two or more excited species proved to be a serious technical obstacle, in particular for extended electronic systems such as surfaces. In recent years, however, coincidence techniques have progressed so far as to image the multi-particle excitation spectrum in an impressive detail. Correspondingly, many-body theoretical concepts have been put forward to interpret the experimental findings and to direct future experimental research. This book gives a snapshot of the present status of multi-particle coincidence studies both from a theoretical and an experimental point of view. It also includes selected topical review articles that highlight the achievements and the power of coincident techniques.
The recent discovery of a type II supernova in the Large Magellanic Cloud provides a rare chance to compare models of stellar evolution and nucleosynthesis directly with observations. This workshop covers thermonuclear reaction rates in chaos (experimental and theoretical), stellar evolution, nucleosynthesis and isotopic anomalies in meteorites and, in a final section, the supernovae, in particular SN 1987A. It brings the most interesting news in the rapidly developing field of nuclear astrophysics to researchers and also to graduate students. Recent and future developments are discussed. Special emphasis is placed on experimental and theoretical approaches to obtaining nuclear reaction rates, models of stellar evolution and explosions, and theories of nucleosynthesis. Various aspects of stellar evolution, nucleosynthesis, and thermonuclear reactions of astrophysical interest are reviewed. Several contributions deal with supernova explosions of massive stars, and in particular with Supernova 1987A and its impact on current models of the evolution of massive stars, the gravitational collapse of stellar cores, and neutrino physics and astronomy.
Nowadays the realm of intermediate energy as a bridge between nuclear and particle physics attracts considerable interest. This volume surveys recent developments in the theory of quark correlations in hadronic matter and also informs about experimental findings. The main themes are: dynamicalsymmetries of heavy quarks, diquarks, weak interactions, hadron spectroscopyand quark models, chiral invariant quark forces, quark confinement and quarkaspects of hadronic interactions.
The first U. S. Army Natick Research, Development and Engineering Center Atomic Force/Scanning Tunneling Microscopy (AFM/STM) Symposium was held on lune 8-10, 1993 in Natick, Massachusetts. This book represents the compilation of the papers presented at the meeting. The purpose ofthis symposium was to provide a forum where scientists from a number of diverse fields could interact with one another and exchange ideas. The various topics inc1uded application of AFM/STM in material sciences, polymers, physics, biology and biotechnology, along with recent developments inc1uding new probe microscopies and frontiers in this exciting area. The meeting's format was designed to encourage communication between members of the general scientific community and those individuals who are at the cutting edge of AFM, STM and other probe microscopies. It immediately became clear that this conference enabled interdisciplinary interactions among researchers from academia, industry and government, and set the tone for future collaborations. Expert scientists from diverse scientific areas including physics, chemistry, biology, materials science and electronics were invited to participate in the symposium. The agenda of the meeting was divided into three major sessions. In the first session, Biological Nanostructure, topics ranged from AFM ofDNA to STM imagmg ofthe biomoleeule tubulin and bacterialluciferase to the AFM of starch polymer double helices to AFM imaging of food surfaces.
The Foundation for Advances in Medicine and Science (FAMS), the organizers of SCANNING 98, sponsored its third annual Atomic Force Microscopy/Scanning Tunneling Microscopy Symposium at the Omni Inner Harbor Hotelin Baltimore, Maryland, from May 9 to 12, 1998. This book represents the compilation of papers that were presented at the AFM/STM Symposium as well as a few that were presented at SCANNING 96 and SCANNING 97 meetings that took place in Monterey, California. The purpose of the symposium was to provide an interface between scientists and engineers, representatives of industry, government and academia, all of whom have a common interest in probe microscopies. The meetings offered an ideal forum where ideas could easily be exchanged and where individuals from diverse fields who are on the cutting edge ofprobe microscopy research could communicate with one another. Experts in probe microscopy from around the world representing a wide range of disciplines including physics, biotechnology, nanotechnology, chemistry, material science, etc., were invited to participate. The format of the meeting was structured so as to encourage communication among these individuals. During the first day's sessions papers were presented on general topics such as application of scanning probe microscopy in materials science; STM and scanning tunneling spectroscopy of organic materials; fractal analysis in AFM; and nanomanipulation. Other papers presented included unexpected ordering of a molecule; synthesis ofpeptides and oligonucleotides; and analysis oflunar soils from Apollo 11.
Much progress has been made in recent years in understanding the complex physics of polarized radiation in the sun and stars. This physics includes vector radiative transfer and spectral line formation in the presence of magnetic fields, scattering theory and coherence effects, partial redistribution and turbulent magnetic fields, numerical techniques and Stokes inversion, as well as concepts for polarimetric imaging with a precision limited only by photon statistics. The present volume gives a comprehensive and up-to-date account of this rapidly evolving field of science.
Papers presented at the 20th CFIF fall workshop held in Lisbon, Portugal, in October/November 2002. The focus of these papers is on the latest experimental observations and on theoretical progress made in the fields of few-nucleon dynamics and related problems. The topics range from electron-nucleus scattering, meson production, relativistic effects, structure of nucleons and of light nuclei, to heavy-ion collisions.
This book represents the compilation of papers presented at the second Atomic Force Microscopy/Scanning Tunneling Microscopy (AFM/STM) Symposium, held June 7 to 9, 1994, in Natick, Massachusetts, at Natick Research, Development and Engineering Center, now part ofU.S. Army Soldier Systems Command. As with the 1993 symposium, the 1994 symposium provided a forum where scientists with a common interest in AFM, STM, and other probe microscopies could interact with one another, exchange ideas and explore the possibilities for future collaborations and working relationships. In addition to the scheduled talks and poster sessions, there was an equipment exhibit featuring the newest state-of-the-art AFM/STM microscopes, other probe microscopes, imaging hardware and software, as well as the latest microscope-related and sample preparation accessories. These were all very favorably received by the meeting's attendees. Following opening remarks by Natick's Commander, Colonel Morris E. Price, Jr., and the Technical Director, Dr. Robert W. Lewis, the symposium began with the Keynote Address given by Dr. Michael F. Crommie from Boston University. The agenda was divided into four major sessions. The papers (and posters) presented at the symposium represented a broad spectrum of topics in atomic force microscopy, scanning tunneling microscopy, and other probe microscopies.
The Summer Institute on High Energy Physics was the second of this kind organized at Louvain. Four years ago we had already decided to organize a Summer Institute. The first one was con- ceived in 1970, at Kiev, by D. Speiser, J. Weyers, and G. Zweig, and thanks to a NATO grant took place from August 20th to Septem- ber 15th 1971, at Louvain in the Groot Begijnhof. All lectures were directed toward one subject: duality. The lecturers were R. Brout (ULB - Bruxelles), D. Fairlie (University of Durham), F. Gilman (SLAC - Stanford), D. Horn (University of Tel Aviv), J. Mandula (Caltech - Pasadena), C. Michael (CERN - Geneva), J. Rosner (University of Minnesota), C. Schmidt (CERN - Geneva), J. Veneziano (The Weizmann Institute), J. Weyers (UCL - Louvain and CERN - Geneva), and G. Zweig (Caltech - Pasadena). The direc- tion was in the hands of F. Cerulus (KUL - Louvain), R. Rodenberg (Technische Hochschule, Aachen), D. Speiser (UCL - Louvain), and J. Weyers (CERN - Geneva). Unfortunately it was not possible to publish the lecture notes for that Institute. The second Summer Institute on Elementary Particle Physics took place from August 12th to August 25th 1973, again in Louvain. It was initiated in Chicago, in 1972, by F. Halzen (University of Wisconsin) and J. Weyers (UCL - Louvain and CERN - Geneva). Lecturers included R. Carlitz (University of Chicago), F. Gilman (SLAC - Stanford), F. Halzen (University of Wisconsin), D.
This book begins with a very readable survey "The Sun Today" by J.-C. Pecker. It is followed by thorough reviews from leading experts covering theory and observations. The focus shifts from the solar core, studied via neutrino emissions and helioseismology, through the interface regions where it is believed the large-scale magnetic fields are generated, to the corona, where most of the high temperature phenomena characteristic of this region may be studied directly. As energetic particles play such a vigorous role in this part of the sun, a separate session was devoted to their transport and storage in the corona.
Few-body resonances are in the frontiers of resonance studies. Very similar problems occur in atomic and molecular physics, nuclear physics and high-energy physics. This collection presents the state of the art of the studies of resonance states in these fields and demonstrates their common methodological aspects. Most of the contributions are theoretical, but quite a few are closely linked with experiments through the data they are dealing with.
The idea of this book originated from two series of lectures given by us at the Physics Department of the Catholic University of Petr6polis, in Brazil. Its aim is to present an introduction to the "algebraic" method in the perturbative renormalization of relativistic quantum field theory. Although this approach goes back to the pioneering works of Symanzik in the early 1970s and was systematized by Becchi, Rouet and Stora as early as 1972-1974, its full value has not yet been widely appreciated by the practitioners of quantum field theory. Becchi, Rouet and Stora have, however, shown it to be a powerful tool for proving the renormalizability of theories with (broken) symmetries and of gauge theories. We have thus found it pertinent to collect in a self-contained manner the available information on algebraic renormalization, which was previously scattered in many original papers and in a few older review articles. Although we have taken care to adapt the level of this book to that of a po- graduate (Ph. D. ) course, more advanced researchers will also certainly find it useful. The deeper knowledge of renormalization theory we hope readers will acquire should help them to face the difficult problems of quantum field theory. It should also be very helpful to the more phenomenology oriented readers who want to famili- ize themselves with the formalism of renormalization theory, a necessity in view of the sophisticated perturbative calculations currently being done, in particular in the standard model of particle interactions.
Nuclear astrophysics as it stands today is a fascinating science. Even though, compared to other scientific fields, it is a young discipline which has developed only in this century, it has answered many questions concerning the under standing of our cosmos. One of these great achievements was the concept of nucleosynthesis, the creation of the elements in the early universe in interstellar matter and in stars. Nuclear astrophysics has continued, to solve many riddles of the evolution of the myriads of stars in our cosmos. This review volume attempts to provide an overview of the current status of nuclear astrophysics. Special emphasis is given to the interdisciplinary nature of the field: astronomy, nuclear physics, astrophysics and particle physics are equally involved. One basic effort of nuclear astrophysics is the collection of ob servational facts with astronomical methods. Laboratory studies of the nuclear processes involved in various astrophysical scenarios have provided fundamen tal information serving both as input for and test of astrophysical models. The theoretical understanding of nuclear reaction mechanisms is necessary, for example, to extrapolate the experimentally determined reaction rates to the thermonuclear energy range, which is relevant for the nuclear processes in our cosmos. Astrophysical models and calculations allow us to simulate how nuclear processes contribute to driving the evolution of stars, interstellar matter and the whole universe. Finally, elementary particle physics also plays an important role in the field of nuclear astrophysics, for instance through weak interaction processes involving neutrinos."
Nuclear physics is undoubtedly a many-body problem. A nice introduction into the present status of this subject may be found in the comprehensive mono graph by P. Ring and P. Schuck "The Nuclear Many-Body Problem" (Springer, Berlin, Heidelberg, New York 1980). However, in view of the many challenging problems that remain to be tackled, it is sensible to consider systems with few particles as model cases. These provide the basis for solving the sophisticated many-body problem posed by intermediate and heavy nuclei. Out of the large number of existing nuclear systems, few-particle, that is few-nucleon, systems can be singled out to form a special group. This is possi ble because a comparatively small number of degrees of freedom (or dynamic variables) is required for a complete description of such systems. In these Lectures we utilize this to study few-body systems in great detail, in particular three-and four-body systems. In contrast to published monographs on the subject, we deal not just with nucleonic degrees of freedom but consider also non-nucleonic degrees of freedom. The range of approaches and methods examined exceeds the scope of other textbooks. The Lectures are organized in such a way as to guide the uninitiated reader through the essentials of solving the dynamical equations of few-body systems directly towards practical applications. Formally oriented readers might like to supplement their reading with texts such as "The Quantum Mechanical Few Body Problem" by W. GlOckle (Springer, Berlin, Heidelberg, New York 1983)."
There are many kinds of nuc1ear data books; however some are too much specialized, while others have an arrangement of information which is inconvenient for students to use. With this book, we want to amend these situations. Handbooks of natural sciences must be exact and fair in their presentation of materials and they must be logical and convenient to use. If the users can develop new ideas or gain new insights from the books, they can be judged as valuable. The role of handbooks is not only to give a systematic representation of past knowledge, but also to serve as a basis for intellectual activity leading to future development. The purpose of this data book arises from the points described above. The chart of the nuc1ides which is frequently consulted by radioisotope users is not always convenient. By comparison, our Periodic Table with Nuc1ides has been devised with this in mind. It has been our experience that properties of a desired nuclide could be found in a much shorter time in the Periodic Table with Nuc1ides than in other nuc1ide charts. Additionally, by placing the -stabi1ity line within the nuc1ides in the table, the users may derive unam biguous ideas on the stability of the nuc1ides and the paths related to the creation of stable elements in the universe."
This volume contains the Proceedings of the "XXIV. Inter nationale Universitatswochen fur Kernphysik" held in Schlad ming, Austria, in February 1985. It consists of the written versions of the lectures (3-4 hours) given at this winter school and includes also most of the seminars (30-50 minutes) presented. In choosing the topic for the 1985 meeting, our aim was to give an account of the present understanding of the nucleon-nucleon as well as nucleon-antinucleon inter actions. This field, which is of definite relevance in nuclear and particle physics, has witnessed a rapid develop ment in recent times both in theory and experiment. New evidence has emerged in the whole range from low to extremely high energies. It was an exciting experience to bring to gether knowledge from the very domains of nuclear and high energy physics as well as to meet the respective researchers. Thanks to the efforts of the lecturers, who did a splendid job in presenting the lectures and in preparing their lecture notes, a comprehensive insight into the hadronic interaction between nucleons and anti-nucleons was achieved. The lecture notes were reconsidered by the authors after the meeting and are now being published in their final form. The seminars mainly dealt with specific topics currently under investiga tion within this rather wide field. We are grateful to all authors for their efforts, as they made it possible to speed up the publication of these proceedings."
A fundamental question in contemporary astrophysics is the origin of the elements. Cosmochemistry seeks to answer when, how and where the chemical elements arose. Quantitative answers to these fundamental questions require a multi-disciplinary approach involving stellar evolution, explosive nucleosynthesis and nuclear reactions in different astrophysical environments. There remain, however, many outstanding problems and cosmochemistry remains a fertile area of research. This book is among the first in recent times to put together the essentials of cosmochemistry, combining contributions from leading astrophysicists in the field. The chapters have been organized to provide a clear description of the fundamentals, an introduction to modern techniques such as computational modelling, and glimpses of outstanding issues.
The 7th International Workshop in the series LASER INTERACTION AND RELATED PLASMA PHENOMENA continued the high standards established by the earlier meetings in this series. It was organized under the directorship of Heinrich Hora and George H. Miley at the Naval Postgraduate School in Monterey, California, with Fred Schwirzke as the local organizer. These workshops have presented many "firsts" in laser plasma interactions and especially in laser fusion. Some presentations provided continuity with the past, most represented advancements; however, in some workshops, progress did not appear to be occurring as rapidly as in others. Therefore, it was a special pleasure that in the present workshop when, on October 30, 1985, Chiyoe Yamanaka disclosed a breakthrough in the generation of fusion neutrons with laser fusion targets. The 7th Workshop also continued to represent other new fields of laser-plasma interaction. The progress reported was most pronounced in the fields of X-ray lasers, laser acceleration of particles by electrostatic double layers in plasmas, and a particle beam technique to solve the geometric problem of muon-catalyzed fusion. The development of laser-plasma interactions at medium to high laser intensities may be seen in its whole complexity from a brief review of prior conferences. At the first Workshop in 1969, a comprehensive review of the field was presented by the speakers with the opening address by N. |
You may like...
Metalloporphyrins Catalyzed Oxidations
F. Montanari, L. Casella
Hardcover
R1,604
Discovery Miles 16 040
Algorithm Design: A Methodological…
Patrick Bosc, Marc Guyomard, …
Paperback
R1,547
Discovery Miles 15 470
|