![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
Nuclear Physics: Principles and Applications is an introduction to the basic theory and applications of modern nuclear physics. Aimed at students taking a first course in nuclear physics, the text is divided into two broad sections. The first part provides a general introduction to nuclear physics, whilst the latter half focuses on some of the most important and current applications, including nuclear medicine, instrumentation and energy from fission and fusion. Written from an experimental point of view, this text offers the reader many practical examples and problems to help encourage understanding. Although, complex material treatments are avoided, derivations of formulae are given as necessary, but with a minimum mathematical complexity. Nuclear Physics: Principles and Applications
This is the story of a new science. Beginning with an obscure
discovery in 1896, radioactivity led researchers on a quest for
understanding that ultimately confronted the intersection of
knowledge and mystery.
In recent years there have been great advances in the fields of laboratory and astronomical spectroscopy. These have been equally matched by large-scale computations using state-of-the-art theoretical methods. The accurate atomic opacities that are available today play a great role in the field of biomedical research using nanotechnology. The proceedings of the "International Conference on Recent Advances in Spectroscopy: Theoretical, Experimental and Astrophysical Perspectives" contain both invited and contributory papers, which give the most recent results by the peers in the areas of theoretical and experimental atomic physics as well as observational astrophysics.
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. * Fourth edition of this successful title in the Manchester Physics series * Includes information on recent key discoveries including: An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of physics beyond the standard model , including the interaction of particle physics with cosmology * Additional problems in all chapters, with solutions to selected problems available on the book s website * Advanced material appears in optional starred sections
This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica (R)), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica (R) codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica (R) or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.
The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of results relevant for the ongoing research programme at the LHC. It includes an in-depth description of various analytic resummation techniques (which form the basis for our understanding of the QCD radiation pattern and how strong production processes manifest themselves in data) and a concise discussion of numerical resummation through parton showers. This forms the basis of event generators for the simulation of LHC physics, and their matching and merging with fixed-order matrix elements. It also gives a detailed presentation of the physics behind the parton distribution functions (which are a necessary ingredient for every calculation relevant for physics at hadron colliders such as the LHC) and an introduction to non-perturbative aspects of the strong interaction, including inclusive observables such as total and elastic cross sections, and non-trivial effects such as multiple parton interactions and hadronization. The book concludes with a useful overview contextualising data from previous experiments such as the Tevatron and the Run I of the LHC which have shaped our understanding of QCD at hadron colliders.
"There is a nuclear ghost in Minamisōma." This is how one resident describes a mysterious experience following the 2011 nuclear fallout in coastal Fukushima. Investigating the nuclear ghost among the graying population, Ryo Morimoto encounters radiation’s shapeshifting effects. What happens if state authorities, scientific experts, and the public disagree about the extent and nature of the harm caused by the accident? In one of the first in-depth ethnographic accounts of coastal Fukushima written in English, Nuclear Ghost tells the stories of a diverse group of residents who aspire to live and die well in their now irradiated homes. Their determination to recover their land, cultures, and histories for future generations provides a compelling case study for reimagining relationality and accountability in the ever-atomizing world.
The third edition of a classic book, Basic Ideas and Concepts in Nuclear Physics sets out in a clear and consistent manner the various elements of nuclear physics. Divided into four main parts: the constituents and characteristics of the nucleus; nuclear interactions, including the strong, weak and electromagnetic forces; an introduction to nuclear structure; and recent developments in nuclear structure research, the book delivers a balanced account of both theoretical and experimental nuclear physics. In addition to the numerous revisions and updates to the previous edition to capture the developments in the subject over the last five years, the book contains a new chapter on the structure and stability of very light nuclei. As with the previous edition the author retains a comprehensive set of problems and the book contains an extensive and well-chosen set of diagrams. He keeps the book up to date with recent experimental and theoretical research, provides mathematical details as and when necessary, and illustrates topics with box features containing examples of recent experimental and theoretical research results.
From an expert who advised on the Chernobyl problem as well as in the aftermath of Three Mile Island comes a book that contains experienced engineering assessments of the options for replacing the existing, aged, fossil-fired power stations by renewables, gas-fired, or nuclear plants. From geothermal, solar, and wind to tidal and hydro generation, this important book assesses the engineering of renewable sources for commercial generation and discusses the important aspects of the design, operation, and safety of nuclear stations.
"In an age in which the inexhaustible power of scientific technology makes all things possible, it remains to be seen where we will draw the line, where we will be able to say, here are possibilities that wisdom suggest we avoid." First published to great acclaim in 1986, Langdon Winner's groundbreaking exploration of the political, social, and philosophical implications of technology is timelier than ever. He demonstrates that choices about the kinds of technical systems we build and use are actually choices about who we want to be and what kind of world we want to create--technical decisions are political decisions, and they involve profound choices about power, liberty, order, and justice. A seminal text in the history and philosophy of science, this new edition includes a new chapter, preface, and postscript by the author.
In order to truly understand data signals transmitted by satellite, one must understand scintillation theory in addition to well established theories of EM wave propagation and scattering. Scintillation is a nuisance in satellite EM communications, but it has stimulated numerous theoretical developments with science applications. This book not only presents a thorough theoretical explanation of scintillation, but it also offers a complete library of MATLAB codes that will reproduce the book examples. The library includes GPS coordinate manipulations, satellite orbit prediction, and earth mean magnetic field computations. The subect matter is for EM researchers; however, also theory is relevant to geophysics, acoustics, optics and astoronomy.
This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interactions from fundamental gauge symmetries is explained. The core of the book covers the SM. The tools developed are used to explain its theoretical basis and a clear discussion is given of the critical experimental evidence which underpins it. A thorough account is given of quark flavour and neutrino oscillations based on published experimental results, including some from running experiments. A simple introduction to the Higgs sector of the SM is given. This explains the key idea of how spontaneous symmetry breaking can generate particle masses without violating the underlying gauge symmetry. A key feature of this book is that it gives an accessible explanation of the discovery of the Higgs boson, including the advanced statistical techniques required. The final chapter gives an introduction to LHC physics beyond the standard model and the techniques used in searches for new physics. There is an outline of the shortcomings of the SM and a discussion of possible solutions and future experiments to resolve these outstanding questions. For updates, new results, useful links as well as corrections to errata in this book, please see the book website maintained by the authors: https://pplhcera.physics.ox.ac.uk/
Dieses Open-Access-Buch beschreibt das Leben und die Leistungen des norwegischen Ingenieurs und Physikers Rolf Wideroe. Zu seinen vielen bahnbrechenden Leistungen auf dem Gebiet der Beschleunigerphysik gehoeren unter anderem das Betatron und der Linearbeschleuniger, deren Konzepte er in seiner 27-seitigen Doktorarbeit veroeffentlichte. Das Betatron revolutionierte die Bereiche der Krebsbehandlung durch Strahlentherapie und durch nicht-desktruktive Tests. Krankenhauser auf der ganzen Welt setzen Wideroes Maschine ein, und auch die heutigen modernen Gerate zur Strahlenbehandlung basieren auf seinen Erfindungen. Die jungste Renaissance des Linearbeschleunigers sorgt fur beispiellose Roentgenintensitaten bei Freien-Elektronen-Laser-Anlagen, die weltweit in Betrieb sind. Wideroes Geschichte enthalt eine gehoerige Portion Dramatik, insbesondere wahrend des Zweiten Weltkriegs, als sowohl die Deutschen als auch die Alliierten um seine Mitarbeit buhlten. Der Physiker hatte fuhrende Positionen in multinationalen Industriekonzernen inne und war einer der Berater beim Bau des weltgroessten Kernforschungszentrums CERN in der Schweiz. Er erwarb uber 200 Patente, erhielt mehrere Ehrendoktorwurden und eine Reihe internationaler Auszeichnungen. Die Autorin, Journalistin und Produzentin von Fernsehdokumentationen, erzahlt in diesem Werk eine fesselnde Wissenschaftsgeschichte. Wahrend ihrer Recherche hatte sie in mehreren Landern Zugang zu bisher verschlossenen Archiven erhalten, die eine Fulle von neuem Material und Erkenntnissen, insbesondere im Zusammenhang mit den Kriegsjahren, lieferten. Das E-Book dieses Werks ist als Open-Access-Veroeffentlichung auf springer.com erhaltlich. Die Autorin Aashild Sorheim ist Autorin, Wissenschaftsjournalistin und Produzentin. Sie arbeitete als Journalistin unter anderem fur Aftenposten, Norwegens groesste Tageszeitung, den Norwegischen Rundfunk NRK sowie diverse Forschungsinstitute. Sie ist Grunderin der "Nationalen Stiftung fur die Verbreitung der Forschung". Von 1985 bis 1990 war sie Leiterin der Informationsdienste des koeniglich-norwegischen Rates fur wissenschaftliche und industrielle Forschung. Ihre TV-Dokumentation "Immer Bruder. Rolf und Viggo Wideroe wurde 2016 ausgestrahlt.
Taking the reader through the underlying principles of molecular translational dynamics, this book outlines the ways in which magnetic resonance, through the use of magnetic field gradients, can reveal those dynamics. The measurement of diffusion and flow, over different length and time scales, provides unique insight regarding fluid interactions with porous materials, as well as molecular organisation in soft matter and complex fluids. The book covers both time and frequency domain methodologies, as well as advances in scattering and diffraction methods, multidimensional exchange and correlation experiments and orientational correlation methods ideal for studying anisotropic environments. At the heart of these new methods resides the ubiquitous spin echo, a phenomenon whose discovery underpins nearly every major development in magnetic resonance methodology. Measuring molecular translational motion does not require high spectral resolution and so finds application in new NMR technologies concerned with 'outside the laboratory' applications, in geophysics and petroleum physics, in horticulture, in food technology, in security screening, and in environmental monitoring.
The tokamak (a doughnut-shaped vacuum chamber surrounded by
magnetic coils) is the principal tool in controlled fusion
research. This book acts as an introduction to the subject and a
basic reference for theory, definitions, equations, and
experimental results. Since the first introductory account of
tokamaks in 1987, when the tokamak had become the predominant
device in the attempt to achieve a useful power source from
thermonuclear fusion, and the developments and advances in the
subject covered in the second edition in 1997, following
substantial research on large tokamaks (the long awaited
achievement of significant amounts of fusion power and the problems
involved in designing and building a tokamak reactor), the emphasis
has been on preparing the ground for an experimental reactor. In
addition, there have been further significant advances in
understanding plasma behaviour, such as the wider experience of
internal transport barriers, the appreciation of the role of
tearing models driven by neoclassical effects and insights from
turbulence simulations.
Atoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.
This textbook is a unique and ambitious primer of nuclear physics, which introduces recent theoretical and experimental progresses starting from basics in fundamental quantum mechanics. The highlight is to offer an overview of nuclear structure phenomena relevant to recent key findings such as unstable halo nuclei, superheavy elements, neutron stars, nucleosynthesis, the standard model, lattice quantum chromodynamics (LQCD), and chiral effective theory. An additional attraction is that general properties of nuclei are comprehensively explained from both the theoretical and experimental viewpoints. The book begins with the conceptual and mathematical basics of quantum mechanics, and goes into the main point of nuclear physics - nuclear structure, radioactive ion beam physics, and nuclear reactions. The last chapters devote interdisciplinary topics in association with astrophysics and particle physics. A number of illustrations and exercises with complete solutions are given. Each chapter is comprehensively written starting from fundamentals to gradually reach modern aspects of nuclear physics with the objective to provide an effective description of the cutting edge in the field.
This book is on inertial confinement fusion, an alternative way to
produce electrical power from hydogen fuel by using powerful lasers
or particle beams. It involves the compression of tiny amounts
(micrograms) of fuel to thousands times solid density and pressures
otherwise existing only in the center of stars. Thanks to advances
in laser technology, it is now possible to produce such extreme
states of matter in the laboratory. Recent developments have
boosted laser intensities again with new possibilities for laser
particle accelerators, laser nuclear physics, and fast ignition of
fusion targets. This is a reference book for those working on beam
plasma physics, be it in the context of fundamental research or
applications to fusion energy or novel ultrabright laser sources.
The Physics of Inertial Fusion combines quite different areas of
physics: beam target interaction, dense plasmas, hydrodynamic
implosion and instabilities, radiative energy transfer as well as
fusion reactions. Particular attention is given to simple and
useful modelling, including dimensional analysis and similarity
solutions. Both authors have worked in this field for more than 20
years. They want to address in particular those teaching this topic
to students and all those interested in understanding the technical
basis.
After World War II, the US Atomic Energy Commission (AEC) began mass-producing radioisotopes, sending out nearly 64,000 shipments of radioactive materials to scientists and physicians by 1955. Even as the atomic bomb became the focus of Cold War anxiety, radioisotopes represented the government's efforts to harness the power of the atom for peace-advancing medicine, domestic energy, and foreign relations. In Life Atomic, Angela N. H. Creager tells the story of how these radioisotopes, which were simultaneously scientific tools and political icons, transformed biomedicine and ecology. Government-produced radioisotopes provided physicians with new tools for diagnosis and therapy, specifically cancer therapy, and enabled biologists to trace molecular transformations. Yet the government's attempt to present radioisotopes as marvelous dividends of the atomic age was undercut in the 1950s by the fallout debates, as scientists and citizens recognized the hazards of low-level radiation. Creager reveals that growing consciousness of the danger of radioactivity did not reduce the demand for radioisotopes at hospitals and laboratories, but it did change their popular representation from a therapeutic agent to an environmental poison. She then demonstrates how, by the late twentieth century, public fear of radioactivity overshadowed any appreciation of the positive consequences of the AEC's provision of radioisotopes for research and medicine.
Gravity's Ghost and Big Dog brings to life science's efforts to detect cosmic gravitational waves. These ripples in space-time are predicted by general relativity, and their discovery will not only demonstrate the truth of Einstein's theories but also transform astronomy. Although no gravitational wave has ever been directly detected, the previous five years have been an especially exciting period in the field. Here sociologist Harry Collins offers readers an unprecedented view of gravitational wave research and explains what it means for an analyst to do work of this kind. Collins was embedded with the gravitational wave physicists as they confronted two possible discoveries - "Big Dog," fully analyzed in this volume for the first time, and the "Equinox Event," which was first chronicled by Collins in Gravity's Ghost. He records the agonizing arguments that arose as the scientists worked out what they had seen and how to present it to the world, along the way demonstrating how even the most statistical of sciences rest on social and philosophical choices. Gravity's Ghost and Big Dog draws on nearly fifty years of fieldwork observing scientists at the American Laser Interferometer Gravitational Wave Observatory and elsewhere around the world to offer an inspired commentary on the place of science in society today.
The scattering of high-energy electrons from nuclear and nucleon targets provides a microscope for examining the structure of these tiny objects. The best evidence we have on what nuclei and nucleons actually look like comes from electron scattering. This 2001 book examines the motivation for electron scattering and develops the theoretical analysis of the process. It discusses our theoretical understanding of the underlying structure of nuclei and nucleons at appropriate levels of resolution and sophistication, and summarizes experimental electron scattering capabilities. Only a working knowledge of quantum mechanics and special relativity is assumed, making this a suitable textbook for graduate and advanced undergraduate courses. It will also provide a valuable summary and reference for researchers already working in electron scattering and other areas of nuclear and particle physics. This text has been reissued as an Open Access publication on Cambridge Core.
Aage Bohr (1922-2009) was the central artificer of the unification of the independent (shell) - and of the collective (liquid drop) - models of the atomic nucleus. This unification constitutes the basis of what can be called the second discovery of the atomic nucleus, for which Aage Bohr and his close collaborator Ben Mottelson co-shared the 1975 Nobel Prize in Physics.The selected papers of Aage Bohr published in the present volume provide a clear account of Aage Bohr's ideas concerning the finite quantal many-body system. These ideas changed the nuclear paradigm and connected the field of nuclear physics with that of quantum condensed matter physics as well as with Quantum Electrodynamics (QED). It has also inspired a whole generation of theorists and experimentalists, helping to create the 'Copenhagen School of Nuclear Physics' which turned the Niels Bohr Institute into the Mecca for research in this subject during the 1960s and 1970s. The legacy of Aage Bohr's scientific achievements and that of the school he founded are felt to this day in connection with the cutting-edge research carried out at the forefront of nuclear structure and nuclear reaction studies.Remembering the words of the sage that 'We are dwarfs mounted on the shoulders of giants, so that we can see more and further than they', the present volume is an attempt at seeking illumination from Aage Bohr, through the reading of his masterfully written papers, and by reflecting over commonly experienced events. Furthermore, it may help practitioners acquire an overall view of the basis of modern theory of nuclear structure.
Vladimir Gribov was one of the founding fathers of high-energy elementary particle physics. This volume derives from a graduate lecture course he delivered in the 1970s. It provides graduate students and researchers with the opportunity to learn from the teaching of one of the twentieth century's greatest physicists. Its content is still deeply relevant to modern research, for example exploring properties of the relativistic theory of hadron interactions in a domain of peripheral collisions and large distances that quantum chromodynamics has barely approached. In guiding the reader step-by-step from the basics of quantum mechanics and relativistic kinematics to the most challenging problems of high-energy hadron interactions with simplifying models and physical analogies, it demonstrates general methods of addressing difficult problems in theoretical physics. Covering a combination of topics not treated elsewhere, this 2008 title has been reissued as an Open Access publication on Cambridge Core.
Before matter as we know it emerged, the universe was filled with the primordial state of hadronic matter called quark-gluon plasma. This hot soup of quarks and gluons is effectively an inescapable consequence of our current knowledge about the fundamental hadronic interactions: quantum chromodynamics. This book covers the ongoing search to verify the prediction experimentally and discusses the physical properties of this novel form of matter. It begins with an overview of the subject, followed by a discussion of experimental methods and results. The second half of the book covers hadronic matter in confined and deconfined form, and strangeness as a signature of the quark-gluon phase. It is ideal as an introduction for graduate students, as well as providing a valuable reference for researchers already working in this and related fields. This title, first published in 2002, has been reissued as an Open Access publication on Cambridge Core. |
You may like...
Niels Bohr - Collected Works, Volume 13…
Finn Aaserud
Hardcover
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
Resonant Tunneling Diode Photonics…
Charlie Ironside, Bruno Romeira, …
Paperback
R752
Discovery Miles 7 520
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R78,910
Discovery Miles 789 100
|