![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
Rising operating costs and increased competition have focused attention on the need to improve thermal performance in nuclear power plants (NPPs), to ensure efficient electricity generation. Efforts to improve thermal performance require a broad understanding of NPP design, operation, maintenance, ambient conditions, and thermal sciences. This publication provides various methodologies for tracking and trending NPP thermal performance. It describes the essential elements of a thermal performance programme, providing guidelines on the design of the balance of the plant systems for new build NPPs and improvements to an existing programme for operating NPPs.
Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, which within seconds release energy comparable to what the Sun releases in its entire lifetime. The field of GRBs has developed rapidly and matured over the past decades. Written by a leading researcher, this text presents a thorough treatment of every aspect of the physics of GRBs. It starts with an overview of the field and an introduction to GRB phenomenology. After laying out the basics of relativity, relativistic shocks, and leptonic and hadronic radiation processes, the volume covers all topics related to GRBs, including a general theoretical framework, afterglow and prompt emission models, progenitor, central engine, multi-messenger aspects (cosmic rays, neutrinos, and gravitational waves), cosmological connections, and broader impacts on fundamental physics and astrobiology. It is suitable for advanced undergraduates, graduate students, and experienced researchers in the field of GRBs and high-energy astrophysics in general.
This book provides a comprehensive introduction to photoelectron angular distributions and their use in the laboratory to study light-matter interactions. Photoelectron angular distribution measurements are useful because they can shed light on atomic and molecular electronic configurations and system dynamics, as well as provide information about quantum transition amplitudes and relative phases that are not obtainable from other types of measurements. For example, recent measurements of molecular-frame photoelectron angular distributions have been used to extract photoelectron emission delays in the attosecond range which can provide ultra-sensitive maps of molecular potentials. Additionally, photoelectron angular distribution measurements are an essential tool for studying negative ions. Here, the author presents a detailed, yet easily accessible, theoretical background necessary for experimentalists performing photoelectron angular distribution measurements to better understand their results. The various physical influences on photoelectron angular distributions are revealed through analytical models with the use of angular momentum coupling algebra and spherical tensor operators. The classical and quantum treatments of photoelectron angular distributions are covered clearly and systematically, and the book includes, as well, a chapter on relativistic interactions. Furthermore, the primary methods used to measure photoelectron angular distributions in the laboratory, such as photodetachment electron spectroscopy, velocity-map imaging, and cold target recoil ion momentum spectroscopy, are described. This book features introductory material as well as new insights on the topic, such as the use of angular momentum transfer theory to understand the process of photoelectron detachment in atoms and molecules. Including key derivations, worked examples, and additional exercises for readers to try on their own, this book serves as both a critical guide for young researchers entering the field and as a useful reference for experienced practitioners.
Part 1: A Dostoeyevskijan Hero.- An Archimedes from Sicily studies in Rome.- A Certain Interest in Pure Science.- Ten short papers.- Part 2: Power for the Italian School.- The 1937 Chance.- Landing in Naples.- Part 3: A Legacy from the Grand Inquisitor.- The Mystery of the Missing Papers.- Fortunes and Misfortunes of a Famous Director.- Part 4: Investigation of a Disappearance.- Before March 26.- In Search for a Missing Professor.- The Last Chapter.- Epilogue.
An up-to-date text, covering the concept of incomplete fusion (ICF) in heavy ion (HI) interactions at energies below 10 MeV/ nucleon. Important concepts including the exciton model, the Harp Miller and Berne model, Hybrid model, Sum rule model, Hot spot model and promptly emitted particles model are covered in depth. It studies the ICF and PE-emission in heavy ion reactions at low energies using off-beam and in-beam experimental techniques. Theories of complete fusion (CF) of heavy ions based on Compound Nucleus (CN) mechanism of statistical nuclear reactions, details of the Computer code PACE4 based on CN mechanism, pre-equilibrium (PE) emission, modeling of (ICF) and their limits of application are discussed in detail.
The last twenty years have witnessed an enormous development of nuclear physics. A large number of data have accumulated and many experimental facts are known. As the experimental techniques have achieved greater and greater perfection, the theoretical analysis and interpretation of these data have become correspondingly more accurate and detailed. The development of nuclear physics has depended on the development of physics as a whole. While there were interesting speculations about nuclear constitution as early as 1922, it was impossible to make any quantitative theory of even the simplest nucleus until the discovery of quantum mechanics on the one hand, and the development of experimental methods sufficiently sensitive to detect the presence of a neutral particle (the neutron) on the other hand. The further development of our understanding of the nucleus has depended, and still depends, on the development of ever more powerful experimental techniques for measuring nuclear properties and more powerful theoretical techniques for correlating these properties. Practically every "simple," "reasonable," and "plausible" assumption made in theoretical nuclear physics has turned out to be in need of refinement; and the numerous attempts to derive nuclear forces and the properties of nuclei from a more" fundamental" approach than the analysis of the data have proved unsuccessful so far. Nuclear physics is by no means a finished edifice.
Plasmaphysik gibt eine systematische EinfA1/4hrung in die Methoden
zur theoretischen Beschreibung physikalischer Prozesse in
ionisierten Gasen. Ausgehend vom mikroskopischen Teilchenbild
werden die Gleichungen sowohl fA1/4r eine mikroskopische als auch
fA1/4r eine makroskopische Beschreibung eines Plasmas abgeleitet.
Soweit es ohne grAAeren mathematischen Aufwand mAglich ist, werden
relativistische Effekte berA1/4cksichtigt. Besonders diskutiert
wird die Frage, welche NAherung welcher Fragestellung angemessen
ist.
New geochemical and mineralogical data from research conducted under the IAEA coordinated research project entitled Geochemical and Mineralogical Characterization of Uranium and Thorium Deposits has resulted in a better understanding of the genesis of uranium and thorium mineralization. This publication presents a summary of the research and selected papers from the project’s partners. The results are expected to enhance exploration programmes, resource evaluation and sustainable supply of uranium and thorium for peaceful purposes.
Reliable methods for estimating the cost of a radioactive waste disposal programme are crucial to ensure that the necessary funding for completing the disposal programme is available. Estimating the cost for disposal is however a challenging and complex task. Disposal programmes themselves are complex and long-term undertakings and conditions can be expected to change significantly over the time-span during which a disposal programme is developed and implemented. This publication provides Member States with guidance on how to develop cost estimates for a disposal programme and on how to establish funding mechanisms. It will help readers in becoming informed clients by familiarizing themselves with the approaches and complexities in cost estimates and funding mechanisms for disposal. The publication is applicable to all waste categories and both near surface and geological disposal. It contains relevant examples and case studies from national programmes. The cost figures are intended to give an indication of the possible cost of certain parts or aspects of the disposal programme rather than to compare different disposal programmes' costs.
The ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates This book provides an essential introduction to the physics of quantum many-body systems, which are at the heart of atomic and nuclear physics, condensed matter, and particle physics. Unlike other textbooks on the subject, it covers topics across a broad range of physical fields-phenomena as well as theoretical tools-and does so in a simple and accessible way. Edward Shuryak begins with Feynman diagrams of the quantum and statistical mechanics of a particle; in these applications, the diagrams are easy to calculate and there are no divergencies. He discusses the renormalization group and illustrates its uses, and covers systems such as weakly and strongly coupled Bose and Fermi gases, electron gas, nuclear matter, and quark-gluon plasmas. Phenomena include Bose condensation and superfluidity. Shuryak also looks at Cooper pairing and superconductivity for electrons in metals, liquid (3)He, nuclear matter, and quark-gluon plasma. A recurring topic throughout is topological matter, ranging from ensembles of quantized vortices in superfluids and superconductors to ensembles of colored (QCD) monopoles and instantons in the QCD vacuum. Proven in the classroom, Quantum Many-Body Physics in a Nutshell is the ideal textbook for a one-semester introductory course for graduate students or advanced undergraduates. Teaches students how quantum many-body systems work across many fields of physics Uses path integrals from the very beginning Features the easiest introduction to Feynman diagrams available Draws on the most recent findings, including trapped Fermi and Bose atomic gases Guides students from traditional systems, such as electron gas and nuclear matter, to more advanced ones, such as quark-gluon plasma and the QCD vacuum
This book serves as a practical guide for the use of stereotactic body radiation therapy in clinics. On the basis of more than 10 years of clinical experience with lung cancer, liver cancer and other cancers, a remarkable volume of knowledge has been accumulated. At the same time, great progress in techniques has been achieved. Various new fixing apparatuses, new respiratory regulation techniques, new dose fractionation schedules and new image-guided radiation therapy machines have been developed. This book reviews the history of those developments and reports on various types of toxicities. Review of recent clinical studies is also included. The authors were key members of the JCOG 0403 clinical trials on stereotactic body radiation therapy (SBRT) for both inoperable and operableT1N0M0 primary lung cancer. Readers will learn of the superior outcomes obtained with SBRT for lung cancer and other cancers in terms of local control and toxicities. With its practical focus, this book will benefit radiation oncologists, medical physicists, medical dosimetrists, radiation therapists and senior nurses as well as medical oncologists and surgical oncologists who are interested in radiotherapy.
This text provides an introduction to the science that governs the interaction of light and matter (in the gas phase). It provides readers with the basic knowledge to exploit the light-matter interaction to develop quantitative tools for gas analysis (i.e. optical diagnostics) and understand and interpret the results of spectroscopic measurements. The authors pair the basics of gas-phase spectroscopy with coverage of key optical diagnostic techniques utilized by practicing engineers and scientists to measure fundamental flow-field properties. The text is organized to cover three sub-topics of gas-phase spectroscopy: (1) spectral line positions, (2) spectral line strengths, and (3) spectral lineshapes by way of absorption, emission, and scattering interactions. The latter part of the book describes optical measurement techniques and equipment. Key subspecialties include laser induced fluorescence, tunable laser absorption spectroscopy, and wavelength modulation spectroscopy. It is ideal for students and practitioners across a range of applied sciences including mechanical, aerospace, chemical, and materials engineering.
This is the first volume of a modern introduction to quantum field theory which addresses both mathematicians and physicists, at levels ranging from advanced undergraduate students to professional scientists. The book bridges the acknowledged gap between the different languages used by mathematicians and physicists. For students of mathematics the author shows that detailed knowledge of the physical background helps to motivate the mathematical subjects and to discover interesting interrelationships between quite different mathematical topics. For students of physics, fairly advanced mathematics is presented, which goes beyond the usual curriculum in physics.
Sir Joseph John Thomson was an English physicist and Nobel Prize winner and is credited with the discovery and identification of the electron and with the discovery of the first subatomic particle. Thomson is also credited with finding the first evidence for isotopes of a stable (non-radioactive) element in 1913, as part of his exploration into the composition of canal rays (positive ions). Originally published in 1928, this book presents the first of a series of Founders' Memorial Lectures, delivered at Girton College on March 3rd 1928. The lecture discusses, debates and deliberates the many discoveries of modern physics as well as the structure of the universe, and addresses both the professional scientific worker, but also students with a non-scientific background. This fascinating, insightful and ground breaking lecture will be of considerable value to scholars of physics as well as to anyone with an interest in the history of science.
Why didn't the matter in our Universe annihilate with antimatter immediately after its creation? The study of CP violation may help to answer this fundamental question. This book presents theoretical tools necessary to understand this phenomenon. Reflecting the explosion of new results over the last decade, this second edition has been substantially expanded. It introduces charge conjugation, parity and time reversal, before describing the Kobayashi-Maskawa (KM) theory for CP violation and our understanding of CP violation in kaon decays. It reveals how the discovery of B mesons has provided a new laboratory to study CP violation with KM theory predicting large asymmetries, and discusses how these predictions have been confirmed since the first edition of this book. Later chapters describe the search for a new theory of nature's fundamental dynamics. This book is suitable for researchers in high energy, atomic and nuclear physics, and the history and philosophy of science.
This publication presents the latest update to the INPRO methodology for Nuclear Energy Systems sustainability assessment in the area of waste management and reflects detailed discussions held at an IAEA technical meeting. Waste generated by nuclear energy systems and considered in this publication includes all classes and categories of waste from nuclear power plants and nuclear fuel cycle facilities over the course of normal operations and anticipated operational occurrences. It is anticipated that the information presented in this and other INPRO publications, for example IAEA Nuclear Energy Series No. NG-T-3.12, will assist in the identification of areas for improvement in nuclear energy systems.
Originally published in 1942, this book was written by the renowned physicist and nuclear scientist Wilfrid Bennett Lewis (1908-87). The text presents an account regarding the technique of electrical counting and its role as an essential aid for research in nuclear physics, reflecting the discoveries of Lewis and his contemporaries at the Cavendish Laboratory. References are also included. This book will be of value to anyone with an interest in the writings of Lewis, nuclear physics and the history of science.
Originally published in 1952, as part of the Cambridge Monographs on Physics series, this book was developed to provide a survey of experiments in nuclear physics. It constitutes an attempt to discover how far it is possible to come near to an understanding of the stability properties of nuclei in their lowest states. The text was written by the renowned nuclear physicist Norman Feather (1904-78). The book will be of value to anyone with an interest in nuclear physics and the history of science.
Originally published in 1948, this book was written to provide an introduction to the principal ideas necessary for an understanding in the experimental side of nuclear physics. Part one focuses on tracing the growth of the necessity of the concepts 'nuclear atom' and 'atomic-nucleus-possessing-internal-structure' for the progress of research in physics, whilst parts two, three and four summarise the developments of the subject, which followed upon the acceptance of this interpretation. Chapters include 'Nuclear charge and mass', 'Emission of quanta' and 'Transformations produced by neutrons'. Diagrams and tables are included for reference. This book will be of great value to scholars of the history of physics.
Providing a comprehensive and up-to-date introduction to the theory and applications of slow-neutron scattering, this detailed book equips readers with the fundamental principles of neutron studies, including the background and evolving development of neutron sources, facility design, neutron scattering instrumentation and techniques, and applications in materials phenomena. Drawing on the authors' extensive experience in this field, this text explores the implications of slow-neutron research in greater depth and breadth than ever before in an accessible yet rigorous manner suitable for both students and researchers in the fields of physics, biology, and materials engineering. Through pedagogical examples and in-depth discussion, readers will be able to grasp the full scope of the field of neutron scattering, from theoretical background through to practical, scientific applications.
This book offers a collection of texts by Carl Friedrich von Weizsaecker (1912-2007), a major German universal scientist who was also a pioneer in physics, philosophy, religion on issues of politics and peace research. He worked with Werner Heisenberg and Otto Hahn in the German "Uranverein", obtained a patent for plutonium during World War II and was an opponent of the nuclear armament of the German armed forces (1957). Furthermore, he published a study on the inability to defend Germany (1971) that was instrumental in the debate on defensive defense since the mid 1970s. He wrote on war and peace, peace and truth, policy implications of nuclear energy, on ethical issues of modern strategy, on consequences of war and war prevention and on the theory of power. He coined the term "world domestic policy" which still covers a valid theory for political, institutional secured world peace in the atomic age.
Aage Bohr (1922-2009) was the central artificer of the unification of the independent (shell) - and of the collective (liquid drop) - models of the atomic nucleus. This unification constitutes the basis of what can be called the second discovery of the atomic nucleus, for which Aage Bohr and his close collaborator Ben Mottelson co-shared the 1975 Nobel Prize in Physics.The selected papers of Aage Bohr published in the present volume provide a clear account of Aage Bohr's ideas concerning the finite quantal many-body system. These ideas changed the nuclear paradigm and connected the field of nuclear physics with that of quantum condensed matter physics as well as with Quantum Electrodynamics (QED). It has also inspired a whole generation of theorists and experimentalists, helping to create the 'Copenhagen School of Nuclear Physics' which turned the Niels Bohr Institute into the Mecca for research in this subject during the 1960s and 1970s. The legacy of Aage Bohr's scientific achievements and that of the school he founded are felt to this day in connection with the cutting-edge research carried out at the forefront of nuclear structure and nuclear reaction studies.Remembering the words of the sage that 'We are dwarfs mounted on the shoulders of giants, so that we can see more and further than they', the present volume is an attempt at seeking illumination from Aage Bohr, through the reading of his masterfully written papers, and by reflecting over commonly experienced events. Furthermore, it may help practitioners acquire an overall view of the basis of modern theory of nuclear structure.
Originally published in 1949 as part of the Cambridge Monographs on Physics series, this book provides an outline of the main phenomena and techniques of radioactivity as understood at the time. Moon focuses on the radioactive properties of artificially-made atomic nuclei, as well as both the processes which result in a changed atomic number and those that do not. This book will be of value to anyone with an interest in the history of nuclear physics and the state of research after WWII.
Aimed at graduate students and researchers in theoretical physics, this book presents the modern theory of strong interaction: quantum chromodynamics (QCD). The book exposes various perturbative and nonperturbative approaches to the theory, including chiral effective theory, the problems of anomalies, vacuum tunnel transitions, and the problem of divergence of the perturbative series. The QCD sum rules approach is exposed in detail. A great variety of hadronic properties (masses of mesons and baryons, magnetic moments, form factors, quark distributions in hadrons, etc.) have been found using this method. The evolution of hadronic structure functions is presented in detail, together with polarization phenomena. The problem of jets in QCD is treated through theoretical description and experimental observation. The connection with Regge theory is emphasized. The book covers many aspects of theory which are not discussed in other books, such as CET, QCD sum rules, and BFKL. Provides a deep understanding of various aspects of the modern theory of strong interaction Presents the general properties of QCD, before exploring perturbative and nonperturbative approaches Discusses aspects of the theory such as CET, QCD sum rules, and BFKL, which are not covered in other books" |
![]() ![]() You may like...
Automation Based Creative Design…
Alexander Tzonis, I. White
Hardcover
R6,732
Discovery Miles 67 320
Nonlinear Partial Differential Equations…
Garth Baker, Alexandre S. Freire
Hardcover
R2,584
Discovery Miles 25 840
Nonlinear Waves and Weak Turbulence…
Fitzmaurice, Gurarie, …
Hardcover
R4,560
Discovery Miles 45 600
Imaging, Vision and Learning Based on…
Xue-Cheng Tai, Egil Bae, …
Hardcover
R1,543
Discovery Miles 15 430
Optimal Control of Partial Differential…
Karl-Heinz Hoffmann, D. Mittelmann
Hardcover
R2,609
Discovery Miles 26 090
Populism and Higher Education Curriculum…
Romeo V Turcan, John E Reilly
Hardcover
R3,676
Discovery Miles 36 760
Hyperbolic Problems: Theory, Numerics…
Michael Fey, Rolf Jeltsch
Hardcover
R4,654
Discovery Miles 46 540
|