![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
For the first time, a complete calculation of all 288 polarization observables of deuteron photodisintegration for polarized photons and an oriented deuteron target is presented for energies below +-production threshold. The observables are calculated within a nonrelativistic framework but with inclusion of lowest-order relativistic effects. Explicit meson exchange currents and isobar configurations as manifestation of subnuclear degrees of freedom are included in the calculation. The sensitivity of the various polarization observables with respect to subnuclear degrees of freedom, to electric and magnetic multipole contributions and to a variety of realistic potential models are systematically investigated. Thus this atlas provides the most detailed and systematic survey on polarization observables of this important process. It allows to analyse the different dynamical properties of the np-system as contained in the various observables and, therefore, will be useful for both theoretical studies and for the planning and evaluation of experiments as well. It serves in addition as an important supplement to the recent general review on deuteron photodisintegration by A. Arenhovel and M. Sanzone (Few-Body Systems, Suppl. 3)."
Artificial sources of radiation are commonly used in the manufacturing and service industries, research institutions and universities, and the nuclear power industry. As a result, workers can be exposed to artificial sources of radiation. There are also a significant number of workers, such as underground miners and aircrew, who are exposed to naturally occurring sources of radiation. This publication, prepared in collaboration with the International Labour Organization, and with reference to IAEA Safety Standards Series No. GSR Part 3 provides guidance for individuals and organizations on the assessment of prospective cancer risks due to occupational exposure to ionizing radiation for prevention purposes. It describes cancer risk assessment theory, models and methodologies, and offers practical examples of carrying out these assessments.
"New Trends in Nuclear Collective Dynamics" emphasizes research toward understanding collective and statistical aspects of nuclear dynamics. Well-known lecturers from centers of nuclear research present reviews of recent developments. The topics covered are: -order and chaos in finite quantum systems -dissipation in heavy-ion collisions -collective motionsin warm nuclei -time-dependent mean-field theory with collision terms -nuclear fission and multi-dimensional tunneling -large-scale collective motion
The aim of this book is to provide a single reference source for the wealth of geometrical formulae and relationships that have proven useful in the descrip tion of atomic nuclei and nuclear processes. While many of the sections may be useful to students and instructors it is not a text book but rather a reference book for experimentalists and theoreticians working in this field. In addition the authors have avoided critical assessment of the material presented except, of course, by variations in emphasis. The whole field of macroscopic (or Liquid Drop Model) nuclear physics has its origins in such early works as [Weizsacker 35] and [Bohr 39]. It continued to grow because of its success in explaining collective nuclear excitations [Bohr 52] and fission (see the series of papers culminating in [Cohen 62]). These develop ments correspond to the first maximum in the histogram below, showing the distribution by year of the articles cited in our Bibliography. After the Liquid Drop Model had been worked out in some detail the development of the Struti nsky approach [Strutinsky 68] (which associates single particle contributions to the binding energy with the shape of the nucleus) gave new life to the field. The growth of interest in heavy-ion reaction studies has also contributed.
Nuclear physics is presently experiencing a thrust towards fundamental phy sics questions. Low-energy experiments help in testing beyond today's stan dard models of particle physics. The search for finite neutrino masses and neutrino oscillations, for proton decay, rare and forbidden muon and pion de cays, for an electric dipole moment of the neutron denote some of the efforts to test today's theories of grand unification (GUTs, SUSYs, Superstrings, ... ) complementary to the search for new particles and symmetries in high-energy experiments. The close connections between the laws of microphysics, astrophysics and cosmology open further perspectives. This concerns, to mention some of them, properties of exotic nuclei and nuclear matter, and star evolution; the neutrino and the dark matter in the universe; relations between grand unification and evolution of the early universe. The International Symposium on Weak and Electromagnetic Interactions in Nuclei (W.E.LN. 1986)' held in Heidelberg 1-5 July 1986, in conjunction with the 600th anniversary of the University of Heidelberg, brought together experts in the fields of nuclear and particle physics, astrophysics and cosmol ogy."
This book is the proceedings of a workshop on problems at the interface between elementary particle and nuclear physics. It deals with experimental and theoretical developments in the investigation of hadrons and nuclei and in the study of their interactions at low and high energies, including nonperturbative quantum chromodynamics, quark confinement, hadron spectroscopy, hadronic interactions, strange particles, hypernuclei, structure functions of nucleons and nuclei, antiproton annihilation on nucleons and nuclei, quark-gluon plasmas and heavy-ion collisions. Plans for new accelerators are evaluated and some related topics in astrophysics, such as supernovae and neutrinos, are discussed.
Proceedings of the International Conference, Antwerp, Belgium, September 6-10, 1982
Hydrogen can behave as an alkaline metal or a halogen and can react with nearly all elements of the periodic table. This explains the large number of metal hydrides. Since T. Graham's first observation of the absorption of hydrogen in palladium in 1866 the behaviour of hydrogen in metals has been studied very extensively. The interest was motivated by the possible application of metal-hydrogen systems in new technologies (e.g., moderator material in nuclear fission reactors, reversible storage material for thermal energy and large amounts of hydrogen) and by the fact that metal hydrides show very exciting physical properties (e.g., superconductivity, quantum diffusion, order-disorder transitions, phase diagrams, etc.). Many of these properties have been determined for the stable hydrogen isotopes Hand D in various metals. In comparison, very little is known about the behaviour of the ra dioactive isotope tritium in metals. This book is a first attempt to summarize part of the knowledge of tritium gained in the last few years. In addition to the task of presenting the properties of tritium in metals, I have tried to compare these data with those of protium and deuterium. Furthermore, helium-3 is connected inse parably with tritium via the tritium decay. Therefore one chapter of this book is solely devoted to the curious properties of helium in metals caused mainly by its negligible solubility."
Marcos Moshinsky was born on 20 April 1921, in Kiev, Ukraine, and em- igrated to Mexico at the age of four. He began work at the Universidad N acional Aut6noma de Mexico on 1 January 1942, as a laboratory assis- tant working on the measurement of cosmic rays. He pursued his graduate studies at Princeton University, and wrote his thesis under the supervision of Professor Eugene Wigner. Since 1949, and in spite of many visits and temporary posts held abroad, Moshinsky has been based in Mexico. Through example and encouragement, Moshinsky may be credited to a large extent with the shaping of Mexican scientific research. He has di- rected 40 B. Sc. , M. Sc. , and Ph. D. theses, and published over 200 scientific articles and four books; he holds all the Mexican science prizes, and sev- eral international ones, being a member of 11 academies of learning. Talent and circumstance have placed Marcos Moshinsky at the origin of several of the enterprises of the Mexican and Latin American scientific communities: he was founding editor of the Revista Mexicana de F{sica from 1952 to 1967; the Escuela Latinoamericana de Fisica was initiated and five times organized by him in Mexico; he was founding member and later president of the Academia de la Investigaci6n Cientifica (1962-1963), the Sociedad Mexicana de Fisica (1967-1969), and the Centro Internacional de Fisica y Matematicas A plicadas (1986-), in Cuernavaca.
This volume contains the written versions of invited lectures and abstracts of seminars presented at the 26th "Universitatswochen fiir Kernphysik" (Uni versity nuclear physics weeks) in Schladming, Austria, in February 1987. Again the generous support of our sponsors, the Austrian Ministry of Sci ence and Research, the Styrian government and others, made it possible to invite expert lecturers. The meeting was organized in honour of Prof. Dr. th Walter Thirring in connection with his 60 birthday. In choosing the topics for the lectures we have tried to cover a good many of the areas in which mathematical physics has made significant progress in recent years. Both classical and quantum mechanical problems are considered as well as prob lems in statistical physics and quantum field theory. The common feature lies in the methods of mathematical physics that are used to understand the underlying structure and to proceed towards a rigorous solution. Thanks to the efforts of the speakers this spirit was maintained in all lectures. Due to space limitations only shortened versions of the many seminars presented in Schladming could be included. After the school the lecture notes were revised by the authors, whom we thank for their efforts, which made it possible to speed up publication. Thanks are also due to Mrs. Neuhold for the careful typing of the notes, and to Miss Koubek and Mr. Preitler for their help in proofreading."
This book is the work of three specialists from the field of Economics (B.F), Business (S.S.) and the Natural Sciences (W.S.). While each chapter concentrates more or less on one or other of these areas, with varying degrees of complexity, it is hoped that the readers whatever their background will fmd something of value in each section, in particular those outside their own disciplines. The authors believe that such cross fertilization of ideas will become increasingly needed in the coming development of a sustainable growth society and it is therefore their hope that this book, as a first example of its kind, will thereby contribute in an interdisciplinary way to the general understanding of the issues of sustainable growth. The authors divided their main contributions to the book as follows: Bruno Fritsch Chapters 1,2,3,4,5 and 8 Stephan Schmidheiny Chapter 7 Walter Seifritz Chapters 2, 3, 4 and 6 They would like to thank in particular Lloyd Timberlake for his editorial advice and his assistance on chapter 7. Special thanks are due to Irena Kusar for preparing the original figures and diagrams and to the Paul Scherrer Institute for permission to use the illustration, printing and copying facilities during preparation of the manuscript. They would also like to thank Richard Stratton for assembling, typing and correcting the text, editing and final layout and for his helpful advice and contributions to organising the presentation of the material.
Atoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.
In this Supplement we have collected the invited and contributed talks pre sented at the XVIII European Conference on Few-Body Problems in Physics, organised by the Jozef Stefan Institute and the University of Ljubljana, Slove nia. The Conference, sponsored by the European Physical Society, took place at the lakeside resort of Bled from 8 to 14 September, 2002. This meeting was a part of the series of European Few-Body Conferences, previously held in Evora/Portugal (2000), Autrans/France (1998), Peniscola/Spain (1995), ... Our aim was to emphasise, to a larger extent than at previous Conferences, the interdisciplinarity of research fields of the Few-Body community. To pro mote a richer exchange of ideas, we therefore strived to avoid parallel sessions as much as possible. On the other hand, to promote the participation of young scientists who we feel will eventually shape the future of Few-Body Physics, we wished to give almost all attendees the opportunity to speak."
The sixteenth European Conference on Few Body Problems in Physics has taken place from June 1 to June 6, 1998, in Autrans, a little village in the mountains, close to Grenoble. The Conference follows those organized in Peniscola (1995), Amsterdam (1993), Elba (1991), Uzhgorod (1990) ... The present one has been organized by a group of physicists working in different fields at the University Joseph Fourier of Grenoble who find in this occasion a good opportunity to join their efforts. The core of the organizing committee was nevertheless located at the Institut des Sciences Nucleaires, whose physicists, especially in the group of theoretical physics, have a long tradition in the domain. The Few Body Conference has a natural tendency to be a theoretical one - the exchange about the methods used in different fields is the common point to most participants. It also has a tendency to be a hadronic physics one - the corresponding physics community, perhaps due to the existence of experimen tal facilities devoted to the study of few body systems, is better organized. In preparing the scientific program, we largely relied on the advices of the Inter national Advisory Committee, while avoiding to follow these trends too closely."
Beginning with a concise introduction on the constituents of matter (elementary particles, atomic nuclei, atoms and molecules), this course on the structure of matter focuses on the interaction of particles and radiation with matter. The course is divided into fourteen lectures with each ranging from physical fundamentals to current topics in subatomic and atomic research, thus making links to modern applications. Currently important topics such as channeling, the interaction between molecular ions and matter, and muon-catalyzed fusion are also discussed. The text is suitable as an introduction for graduate students and as a reference for scientists.
This volume contains the proceedings ofthe NATO Advanced Research Workshop 950443 on "Gas lasers-recent development and future prospects". The workshop was held in Moscow, July 2-5, 1995. During the workshop 22 oral presentations and 23 posters havebeen presented. Among the continuously expanding research on new laser systems in the extending spectrum range gas lasers are unique in many ways: the availability of high (average) power in all parts of the spectrum from the far infrared to the vacuum ultraviolet, the homogeneity ofthe active medium with the potential ofhigh beam quality even at high power and their relatively low costs. In the gas laser development one can distinguish the research towards new or improved laboratory devices and the efforts that are devoted to the development of characteristics like reliability, low costs and versatility that make the laser more suitable for industrial purposes. The industrial applications with dedicated devices are not only a natural e"1ension ofthe laser development itselfbut moreover they have nowadays a strong stimulating effecton this development. The workshop offered the participants many opportunities to discuss fundamental and technological problems of different types of lasers connected with beam proporties, excitation technology, new pumping schemes, pulsed power, construction materials and new codes for the description of laser operation. The interest was especially directed towards high power systems operating in the ultraviolet and vacuum ultraviolet, the radio'frequency discharge physics for waveguide structures and the achievement in molecular CO and CO systems.
This book of proceedings collects the papers presented at the Workshop on Diagnostics for ITER, held at Villa Monastero, Varenna (Italy), from August 28 to September 1, 1995. The Workshop was organised by the International School of Plasma Physics "Piero Caldirola. " Established in 1971, the ISPP has organised over fifty advanced courses and workshops on topics mainly related to plasma physics. In particular, courses and workshops on plasma diagnostics (previously held in 1975, 1978, 1982, 1986, and 1991) can be considered milestones in the history of this institution. Looking back at the proceedings of the previous meetings in Varenna, one can appreciate the rapid progress in the field of plasma diagnostics over the past 20 years. The 1995 workshop was co-organised by the Istituto di Fisica del Plasma of the National Research Council (CNR). In contrast to previous Varenna meetings on diagnostics, which have covered diagnostics in present-day tokamaks and which have had a substantial tutorial component, the 1995 workshop concentrated specifically on the problems and challenges of ITER diagnostics. ITER (the International Thennonuclear Experimental Reactor, a joint venture of Europe, Japan, Russia, and the United States, presently under design) will need to measure a wide range of plasma parameters in order to reach and sustain high levels of fusion power. A list of the measurement requirements together with the parameter ranges, target measurement resolutions, and accuracies provides the starting point for selecting a list of candidate diagnostic systems.
An accelerator complex which gives extremely high-intensity proton beams is being constructed in Tokai, Japan. The project is operated by JAEA (Japan Atomic Energy Agency) and KEK (High Energy Accelerator Research Or- nization) and called J-PARC (Japan Proton Accelerator Research Complex). J-PARC accelerator complex consists of 200MeV linac, 3GeV rapid cycling synchrotron, and 30GeV main synchrotron. The energy of linac will be - tendedto400MeVandtheenergyofthemainringwillbeincreasedto50GeV in the near future. J-PARCaimstoperformvariousresearchesoflifeandmaterialsciencesby using neutron beams from the 3GeV rapid cycling synchrotron. J-PARC also aims to perform various particle and nuclear physics experiments by using the 50GeV main synchrotron. In this book we collected several proposals of particle and nuclear physics experiments to be performed by using 50GeV main synchrotron. Prof. Nagamiya gives a brief introduction of J-PARC. He describes the purpose of the project, the aims of the various facilities, and the researches to be done by using these facilities. Prof. Ichikawa discusses about the long baseline nutrino oscillation expe- ment. This proposal is called T2K (Tokai to Kamioka) and it aims to measure mixinganglesintheleptonsector.Theytrytoperformaprecisemeasurement of ? by measuring the ? disappearance. Then they go to determine ? by 23 ? 13 measuring ? -? appearance signal. They also search for sterile components ? e by measuring NC events. Prof. Lim discusses about the experiment which searches a very rare decay 0 0 oftheneutralkaon:K ? ? ?? -.ThisdecayoccursviaadirectCPviolation. L Hewillsearchthisdecaymodewithhighersensitivitythanthestandardmodel expectation level.
Julian Schwinger had plans to write a textbook on quantum mechanics since the 1950s when he was teaching the subject at Harvard University regularly. * t Roger Newton remembers: A] group of us (Stanley Deser, Dick Arnowitt, Chuck Zemach, Paul Martin and I forgot who else) wrote up lecture notes on his Quantum Mechanics course but he never wanted them published because he "had not yet found the perfect way to do quantum mechanics. " The only text of those days that got published eventually - following a sug gestion by, and with the help of, Robert Kohler: : - were the notes to the lectures that Schwinger presented at Les Houches in 1955. The book was reissued in 1991, with this Special Preface by Schwinger 3]: The first two chapters of this book are devoted to Quantum Kine matics. In 1985 I had the opportunity to review that development in connection with the celebration of the 100th anniversary of Hermann Weyl's birthday. . . . ] In presenting my lecture 4] I felt the need to alter only one thing: the notation. Lest one think this rather triv ial, recall that the ultimate abandonment, early in the 19th century, of Newton's method of fluxions in favor of the Leibnizian calculus, stemmed from the greater flexibility of the latter's notation."
Nuclear power offers an abundant energy supply for the long term and at reasonable costs. Both are badly needed in this world of limited energy reserves and rising energy prices. On the other hand, there are questions widely discussed in the public on nuclear safety, on acceptable means of nuclear waste disposal, and concern on the proliferation of nuclear weapon capabilities. Public confu sion is widespread since facts are often overshadowed by emotions. Recognizing the need for reliable, factual and comprehensive information on nuclear energy, this book on Nuclear Fission Reactors is published .to present the scientific and technical facts of nuclear fission reactors, and to analyse their potential role and risks. The author, Professor Dr. G. Kessler, has worked in nuclear research and project management since 1963. From 1975 to 1978, he acted as project leader for the German/Belgian/Dutch Fast Breeder research and. development activi ties. Since then, he has been Director of the Institute of Neutron Physics and Reactor Technology in the Karlsruhe Nuclear Research Centre. The book is part of the series "Topics in Energy" issued by Springer Publish ers. The intention of this series of in-depth analyses is to present the facts, inherent problems, trends and prospects of energy demand, resources and tech nologies. The vital importance of energy for human activities has become apparent to the public particularly through dramatic events in the area of oil supply."
The Second International Conference on Atomic and Nuclear Clusters '93 was orga nized in a joint effort by the 'Demokritos' National Center for Scientific Research, G. S. Anagnostatos (representing the atomic physics) and the Hahn-Meitner-Institut, W. von Oertzen (representing the nuclear physics). The subject of clusters - small aggregates of particles - is a topic of primary interest in both atomic and nuclear physics, and also in other fields like in the case of quark-structure of baryons and in cosmology. The interplay between atomic and nuclear physics is a particularly fascinating one because many concepts are common to both fields (quantal effects, shells, geometric structures, collective modes, fission etc. ) This conference was the second after the first one organized by Professor M. Brenner in Abo (Finland) in 1991. The general atmosphere of a joint forum for atomic and nuclear physicists was very fruitful and thus the decision to have a sequence of such meetings has been taken. A third one is planned in St. Petersburg (Russia) with Professor K. Gridnev (St. Petersburg) and Mme. Professor C. Bnkhignac (Orsay) as Chairpersons. The conference site, Fin\. on Santorini island (Greece), was a wonderful choice for a conference. It is small, which helps to keep people concentrated in a smaller community, it has a perfect convention center, the P. Nomikos Conference Center, and a very beautiful landscape formed by a large volcanic crater.
Why to apply solid-state NMR? - By now, we should have learned that NMR is mainly used for the study of molecules in solution, while x-ray diffraction is the method of choice for solids. Based on this fact, the two recent 'NMR-Nobelprizes' went indeed into the liquid phase: my own one eleven years ago, and particularly the most recent one to Kurt Wuthrich. His prize is beyond any doubts very well justified. His contribution towards the study of biomolecules in solution, in their native (or almost native) environment is truly monumental. We all will profit from it indirectly when one of our future diseases will be cured with better drugs, based on the insightful knowledge gained through liquid-state NMR. Two fields of NMR are still left out of the Nobel Prize game: magnetic reso nance imaging (MRI) and solid-state NMR. The disrespect for MRI in Stockholm is particularly difficult to understand; but this is not a subject to be discussed at the present place. Solid-state NMR is the third of the three great fields of NMR, powerful already today and very promising for the near future."
The 1987 Fontevraud Conference gathered more than 100 physicists for the purpose of discussing the latest developments of research on few-body problems. In addition to participants from most European countries representatives from Brazil, Canada, Israel, Japan, South Africa, and the USA took part in the meeting. In the conference program special emphasis was laid on bringing together the various fields, where few-body problems play an important role. Beyond the traditional areas of nuclear and particle physics, in recent years interest has been focussed especially on atomic and molecular physics. This developent is due to the design of new techniques for solving few-body problems under rather general premises. The proceedings contain all plenary talks and the contributions presented orally at the conference. They cover such topics as: few-quark systems and short-range phenomena, two- and three-body forces in quark as well as nucleonic systems, few-hadron bound states, response of few-body systems to electromagnetic and hadronic probes, form factors, hypernuclei, atomic and molecular few-body systems, hyperspherical method, separable expansions, numerical techniques, etc. It appears that recently, even in one year after the Tokyo-Sendai Conference, much progress has been achieved in research on various few-body systems. The present volume gives a comprehensive summary of the modern state of the art and at the same time a proper account of the most recent results obtained in the different institutions and laboratories.
Brillouin-Wigner Methods for Many-Body Systems gives an introduction to many-body methods in electronic structure theory for the graduate student and post-doctoral researcher. It provides researchers in many-body physics and theoretical chemistry with an account of Brillouin-Wigner methodology as it has been developed in recent years to handle the multireference correlation problem. Moreover, the frontiers of this research field are defined. This volume is of interest to atomic and molecular physicists, physical chemists and chemical physicists, quantum chemists and condensed matter theorists, computational chemists and applied mathematicians. |
![]() ![]() You may like...
Comprehensive Nuclear Materials
Rudy Konings, Roger Stoller
Hardcover
R83,942
Discovery Miles 839 420
Radioactivity - History, Science, Vital…
Michael F. L'Annunziata
Hardcover
Nuclear Density Functional Theory
I.Zh. Petkov, M.V. Stoitsov
Hardcover
R3,841
Discovery Miles 38 410
A Mathematical Journey to Quantum…
Salvatore Capozziello, Wladimir-Georges Boskoff
Hardcover
R2,531
Discovery Miles 25 310
|