![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
The idea of this book originated from two series of lectures given by us at the Physics Department of the Catholic University of Petr6polis, in Brazil. Its aim is to present an introduction to the "algebraic" method in the perturbative renormalization of relativistic quantum field theory. Although this approach goes back to the pioneering works of Symanzik in the early 1970s and was systematized by Becchi, Rouet and Stora as early as 1972-1974, its full value has not yet been widely appreciated by the practitioners of quantum field theory. Becchi, Rouet and Stora have, however, shown it to be a powerful tool for proving the renormalizability of theories with (broken) symmetries and of gauge theories. We have thus found it pertinent to collect in a self-contained manner the available information on algebraic renormalization, which was previously scattered in many original papers and in a few older review articles. Although we have taken care to adapt the level of this book to that of a po- graduate (Ph. D. ) course, more advanced researchers will also certainly find it useful. The deeper knowledge of renormalization theory we hope readers will acquire should help them to face the difficult problems of quantum field theory. It should also be very helpful to the more phenomenology oriented readers who want to famili- ize themselves with the formalism of renormalization theory, a necessity in view of the sophisticated perturbative calculations currently being done, in particular in the standard model of particle interactions.
Written in a pedagogical way, the articles in this book address graduate students as well as researchers and are well suited for seminar work. Subjects at the forefront of nuclear research, bordering other areas of many-particle physics, such as electron scattering at different energy scales, new physics with radioactive beams, multifragmentation, relativistic nuclear physics, high spin nuclear problems, chaos, the role of the continuum in nuclear physics or recent calculations with the shell model are presented. It is felt that the topics treated in this book address the main future lines of development of nuclear physics.
In this volume, experimentalists and theoreticians discuss which experiments and calculations are needed to make significant progress in the field and also how experiments and theoretical descriptions can be compared. The topics treated are the electromagnetic production of Goldstone bosons, pion--pion and pion--nucleon interactions, hadron polarizability and form factors.
Photoproduction of pions from complex nuclei has become an investigative tool for (1) the detailed form of the elementary photopion amplitude, (2) the pion-nucleus optical potential, (3) nuclear structure, and (4) off-shell and medium effects on the elementary amplitude in nuclear processes. In this book, all these aspects are considered in detail. With improved experimental accuracy and beam tech- nology the study of nuclear pion photoproduction will break new ground and become an even more powerful investigative tool. This monograph is intended as an introductory guide as well as a reference manual for grad- uate students and researchers working in this important area of physics.
The book provides a review of the hadronic final state measurements at HERA in deep inelastic scattering. It covers general event properties, particle spectra, heavy flavours, jets, event shape measurements, QCD instantons and small-x physics. The emphasis is on experimental results, providing quick access to the data (complete up to fall 1997) for reference. The results are discussed in the context of QCD.
This book primarily focuses on the fundamentals of and new developments in electrochemiluminescence (ECL), presenting high-quality content and explicitly aiming to summarize and disseminate the current state-of-the-art. The topics covered include the fundamental theory, mechanism, types of reactions involved, and the instrumental techniques. The book also examines the applications of ECL in many of the emerging fields of science, such as bioanalytical, analytical, clinical, pharmaceutical, forensic, military, microchip, TAS, and LED. It will be invaluable to bioanalysts, drug analysts, pharmaceutical researchers and other professionals worldwide, as well as to other interested readers.
This volume is published in honor of Friedrich Hund's 100th birthday. It is a modern review on matter at high densities and pressures in astrophysics from Hund's early contribution to present-day ideas. The relation between the equation of state and the structure of compact cosmic objects is discussed, and two main contributions deal with the equation of state of baryonic matter at nuclear densities and with the numerical solution of the general relativistic field equations for non-rotating and rapidly rotating neutron stars. In a final chapter the present state of asteroseismology is presented as a tool to explore the interior of cosmic objects by analyzing the observed free oscillations of the Earth, the Sun, and white dwarf stars.
Rasmus Brogaard's thesis digs into the fundamental issue of how the shape of a molecule relates to its photochemical reactivity. This relation is drastically different from that of ground-state chemistry, since lifetimes of excited states are often comparable to or even shorter than the time scales of conformational changes. Combining theoretical and experimental efforts in femto-second time-resolved photoionization Rasmus Brogaard finds that a requirement for an efficient photochemical reaction is the prearrangement of the constituents in a reactive conformation. Furthermore, he is able to show that by exploiting a strong ionic interaction between two chromophores, a coherent molecular motion can be induced and probed in real-time. This way of using bichromophoric interactions provides a promising strategy for future research on conformational dynamics.
CP violation is an intriguing and elusive subject, and current knowledge of it remains limited, on both the experimental and theoretical levels. Researchers lack a fundamental understanding of its origin, and this is all the more important because CP violation is related to the generation problem and mass problem, two of the basic open questions in particle physics. This book provides beginning researchers with a self-contained introduction to the subject, starting at an elementary level and taking the reader to the forefront of current research.
The book is a quantitative treatment of the theory and natural variations of light stable isotopes, and includes more than 100 original applications. Isotope distribution is rigorously discussed in the context of fractionation processes, thermodynamics, mass conservation, exchange kinetics and diffusion theory. The theoretical principles are illustrated with natural examples, emphasizing oygen and hydrogen isotope variations in natural waters, terrestrial and extraterrestrial rocks, and hydrothermal systems. New data on meteoric precipitation, rivers, and hydrothermal systems are included.
The book addresses graduate students as well as scientists interested in applications of the standard model for strong and electroweak interactions to experimentally determinable quantities. Computer simulations and the relations between various approaches to quantum field theory, such as perturbative methods, lattice methods and effective theories, are also discussed.
There have been many demonstrations, particularly for magnetic impurity ions in crystals, that spin-Hamiltonians are able to account for a wide range of experimental results in terms of much smaller numbers of parameters. Yet they were originally derived from crystal field theory, which contains a logical flaw; electrons on the magnetic ions are distinguished from those on the ligands. Thus there is a challenge: to replace crystal field theory with one of equal or greater predictive power that is based on a surer footing. The theory developed in this book begins with a generic Hamiltonian, one that is common to most molecular and solid state problems and that does not violate the symmetry requirements imposed on electrons and nuclei. Using a version of degenerate perturbation theory due to Bloch and the introduction of Wannier functions, projection operators, and unitary transformations, Stevens shows that it is possible to replace crystal field theory as a basis for the spin-Hamiltonians of single magnetic ions and pairs and lattices of magnetic ions, even when the nuclei have vibrational motion. The power of the method is further demonstrated by showing that it can be extended to include lattice vibration and conduction by electron hopping such as probably occurs in high-Tc superconductors. Thus Stevens shows how an apparently successful ad hoc method of the past can be replaced by a much more soundly based one that not only incorporates all the previous successes but appears to open the way to extensions far outside the scope of the previously available methods. So far only some of these have been explored. The book should therefore be of great interest to all physicists and chemists concerned with understanding the special properties of molecules and solids that are imposed by the presence of magnetic ions. Originally published in 1997. The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These paperback editions preserve the original texts of these important books while presenting them in durable paperback editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
On the occasion of the 50th anniversary of the journal Theoretical Chemistry Accounts, leading researchers in theoretical chemistry present current and forward-looking perspectives on major developments in the field. Originally published in the journal, these outstanding contributions are now available in a hardcover print format. This collection will be of benefit in particular to those research groups and libraries that have chosen to have only electronic access to the journal. With contributions from Christopher J. Cramer, Gino A. DiLabio, Filipp Furche, Sophya Garashchuk, Peter M.W. Gill, Hua Guo, So Hirata, Brian K. Kendrick, Hans Lischka, Wenjian Liu, Fernando R. Ornellas, Irina Paci, Kirk A. Peterson, Markus Reiher, Jeffrey R. Reimers, Manuel Smeu, Seiichiro Ten-no, Diego Troya, Donald G. Truhlar, Christoph van Wullen, Dong H. Zhang "
These proceedings give fundamental information on the collision mechanisms of ions and atoms at relatively high energies and on their highly excited atomic states. The information derived from such studies can often be applied in other fields such as material analysis, dosimetry, the study of the upper atmosphere and controlled fusion. Phenomena involving the classical ion-atom collision fields, impact parameter dependences, quasimolecular and electron correlation effects, coherence phenomena, the electron and photon spectroscopy of highly charged projectile and recoil ions, the loss and capture of electrons, molecular and solid state effects, and different aspects of instrumentation are all discussed in this volume.
Before you lies the proceedings oft he NATO Advanced Study Institute/Newton Institute Workshop "Confinement, duality and non perturbative aspects of QCD." The school covered the most important techniques to study Quantum Chromodynamics (QCD) andconfinement, fromlattice gauge theory, through Wilson's renormalisation group, to electromagnetic duality. The organisingcommittee existed of: Ian Drummond (DAMTP, Cambridge), Mikhail Shifman (Minneapolis), Peter West (King's, London), and Pierrevan Baal (Leiden), who acted as director oft he school. This summer school was the concluding activity ofa six month programme on "Non perturbative Aspects of Qua ntum Field Theory" taking place at the Isaac Newton Institute for Mathematical Sciences in Ca mbridge, UK, whic h started in January 1997, organised by David Olive, Pierre van Baal, and Peter West. A large number ofthe lecturers also participated in the programme and a few programme participants were asked to present a seminar at the school. Not contained in these proceedings are the seminars by Peter Landshoff (DAMTP, Cambridge) on "The Pomeron" and Ludwig Faddeev (Steklov Math. Inst., St. Petersburg) on "Knot like solitons in 3+1 dimen sional field theory." In additiont o the lectures and seminars there were two poster sessions at which participants presented their work. Authors and titles ofthese posters are listed on a separate page. These pro ceedings address the longstanding question of understanding how quarks are confined w ithin subnuclear particles.
Much progress has been made in recent years in understanding the complex physics of polarized radiation in the sun and stars. This physics includes vector radiative transfer and spectral line formation in the presence of magnetic fields, scattering theory and coherence effects, partial redistribution and turbulent magnetic fields, numerical techniques and Stokes inversion, as well as concepts for polarimetric imaging with a precision limited only by photon statistics. The present volume gives a comprehensive and up-to-date account of this rapidly evolving field of science. |
![]() ![]() You may like...
Mathematical and Statistical Methods for…
Marco Corazza, Pizzi Claudio
Hardcover
R2,915
Discovery Miles 29 150
Problems And Solutions In Banach Spaces…
Willi-Hans Steeb, Wolfgang Mathis
Hardcover
R3,596
Discovery Miles 35 960
Deep Learning Applications for…
Monica R. Mundada, Seema S., …
Hardcover
R7,211
Discovery Miles 72 110
Pattern Recognition and Signal Analysis…
Anke Meyer-Baese, Volker J. Schmid
Paperback
|