![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
This book is based on the course in theoretical nuclear physics that has been given by the author for some years at the T. G. Shevchenko Kiev State University. This version is supplemented and revised to include new results obtained after 1971 and 1975 when the first and second editions were published. This text is intended as an introduction to the nonrelativistic theory of po tential scattering. The analysis is based on the scattering matrix concept where the relationship between the scattering matrix and observable physical quantities is considered. The stationary formulation of the scattering problem is presented; particle wave functions in the external field are obtained. A formulation of the optical theorem is given as well as a discussion on time inversion and the reci procity theorem. Analytic properties of the scattering matrix, dispersion relations, and complex moments are analyzed. The dispersion relations for an arbitrary di rection scattering amplitude are proven, and analytic properties of the amplitude in the plane of the complex cosine of the scattering angle are studied in detail."
These lectures concern the properties of topological charge in gauge theories and the physical effects which have been attributed to its existence. No introduction to this subject would be adequate without a discussion of the original work of Belavin, Polyakov, Schwarz, and Tyupkin [1], of the beautiful calculation by 't Hooft [2,3], and of the occurrence of 8-vacua [4-6]. Other important topics include recent progress on solutions of the Yang-Mills equation of motion [7,8], and the problem of parity and time-reversal invariance in strong interactions [9] (axions [10,11], etc. ). In a few places, I have strayed from the conventional line and in one important case, disagreed with it. The im- portant remark concerns the connection between chirality and topological charge first pointed out by 't Hooft [2]: in the literature, the rule is repeatedly quoted with the wrong sign! If QS is the generator for Abelian chiral transformations of massless quarks with N flavours, the correct form of the rule is ssQs = - 2N {topological charge} (1. 1) where ssQS means the out eigenvalue of QS minus the in eigenvalue. The sign can be checked by consulting the standard WKB calculation [2,3], rotating to Minkowski space, and observing that the sum of right-handed chiralities of operators in a Green's function equals -ssQS. The wrong sign is an automatie consequence of a standard but incorrect derivation in which the axial charge is misidentified.
For the first time, a complete calculation of all 288 polarization observables of deuteron photodisintegration for polarized photons and an oriented deuteron target is presented for energies below +-production threshold. The observables are calculated within a nonrelativistic framework but with inclusion of lowest-order relativistic effects. Explicit meson exchange currents and isobar configurations as manifestation of subnuclear degrees of freedom are included in the calculation. The sensitivity of the various polarization observables with respect to subnuclear degrees of freedom, to electric and magnetic multipole contributions and to a variety of realistic potential models are systematically investigated. Thus this atlas provides the most detailed and systematic survey on polarization observables of this important process. It allows to analyse the different dynamical properties of the np-system as contained in the various observables and, therefore, will be useful for both theoretical studies and for the planning and evaluation of experiments as well. It serves in addition as an important supplement to the recent general review on deuteron photodisintegration by A. Arenhovel and M. Sanzone (Few-Body Systems, Suppl. 3)."
The aim of this book is to provide a single reference source for the wealth of geometrical formulae and relationships that have proven useful in the descrip tion of atomic nuclei and nuclear processes. While many of the sections may be useful to students and instructors it is not a text book but rather a reference book for experimentalists and theoreticians working in this field. In addition the authors have avoided critical assessment of the material presented except, of course, by variations in emphasis. The whole field of macroscopic (or Liquid Drop Model) nuclear physics has its origins in such early works as [Weizsacker 35] and [Bohr 39]. It continued to grow because of its success in explaining collective nuclear excitations [Bohr 52] and fission (see the series of papers culminating in [Cohen 62]). These develop ments correspond to the first maximum in the histogram below, showing the distribution by year of the articles cited in our Bibliography. After the Liquid Drop Model had been worked out in some detail the development of the Struti nsky approach [Strutinsky 68] (which associates single particle contributions to the binding energy with the shape of the nucleus) gave new life to the field. The growth of interest in heavy-ion reaction studies has also contributed.
"New Trends in Nuclear Collective Dynamics" emphasizes research toward understanding collective and statistical aspects of nuclear dynamics. Well-known lecturers from centers of nuclear research present reviews of recent developments. The topics covered are: -order and chaos in finite quantum systems -dissipation in heavy-ion collisions -collective motionsin warm nuclei -time-dependent mean-field theory with collision terms -nuclear fission and multi-dimensional tunneling -large-scale collective motion
The 6th Advanced Course in Theoretical Physics was held at the University of Cape Town, January 8-19, 1990. The topic of the course was "Phase Structure of Strongly Interacting Matter." There were ten invited speakers from overseas, each having up to six hours in which to present his field of research to a relatively small audience of about 50 participants. This allowed for the presentation of a broad, coherent and pedagogical review of the present status of the field. In addition there were several one-hour presentations by local participants. The main emphasis of the course was on the study of the properties of high density hot nuclear matter. This field is of particular interest because of the belief that a deconfined quark-gluon plasma could be created in such an environment when the temperature reaches about 200MeV. In the nuclear regime a so-called "liquid-to-gas" phase transition is expected at a temperature of approximately 10- 20MeV. Both of these topics received ample attention at the school. Owing the nature of the field, there exists much overlapping interest from both the nuclear physics and high-energy particle physics communities. It is hoped that these proceedings will contribute to building a bridge between the two groups."
Recombination lines at radio wavelengths have been - and still are - a pow erful tool for modern astronomy. For more than thirty years they have allowed astronomers to probe the gases from which stars form. They have even been detected in the Sun. In addition, observations of these spectral lines facilitate basic research into the atom, in forms and environments that can only exist in the huge dimensions and extreme conditions of cosmic laboratories. We intend this book to serve as a tourist's guide to the world of Radio Recombination Lines. It contains three divisions: a history of their discovery, the physics of how they form and how their voyage to us influences their spectral profiles, and a description of their many astronomical contributions to date. The appendix includes supplementary calculations that may be useful to some astronomers. This material also includes tables of line frequencies from 12 MHz to 30THz (AlOJLm) as well as FORTRAN computer code to calculate the fine structure components of the lines, to evaluate radial matrix integrals, and to calculate the departure coefficients of hydrogen in a cosmic environment. It also describes how to convert observational to astrophysical units. The text includes extensive references to the literature to assist readers who want more details.
Nuclear physics is presently experiencing a thrust towards fundamental phy sics questions. Low-energy experiments help in testing beyond today's stan dard models of particle physics. The search for finite neutrino masses and neutrino oscillations, for proton decay, rare and forbidden muon and pion de cays, for an electric dipole moment of the neutron denote some of the efforts to test today's theories of grand unification (GUTs, SUSYs, Superstrings, ... ) complementary to the search for new particles and symmetries in high-energy experiments. The close connections between the laws of microphysics, astrophysics and cosmology open further perspectives. This concerns, to mention some of them, properties of exotic nuclei and nuclear matter, and star evolution; the neutrino and the dark matter in the universe; relations between grand unification and evolution of the early universe. The International Symposium on Weak and Electromagnetic Interactions in Nuclei (W.E.LN. 1986)' held in Heidelberg 1-5 July 1986, in conjunction with the 600th anniversary of the University of Heidelberg, brought together experts in the fields of nuclear and particle physics, astrophysics and cosmol ogy."
This book is the proceedings of a workshop on problems at the interface between elementary particle and nuclear physics. It deals with experimental and theoretical developments in the investigation of hadrons and nuclei and in the study of their interactions at low and high energies, including nonperturbative quantum chromodynamics, quark confinement, hadron spectroscopy, hadronic interactions, strange particles, hypernuclei, structure functions of nucleons and nuclei, antiproton annihilation on nucleons and nuclei, quark-gluon plasmas and heavy-ion collisions. Plans for new accelerators are evaluated and some related topics in astrophysics, such as supernovae and neutrinos, are discussed.
Proceedings of the International Conference, Antwerp, Belgium, September 6-10, 1982
In recent years there has been growing interest in the nucleon-nucleon correl ations inside nuclei. In many respects the motions of the nucleons can be very well described by an overall mean field, so that the motion of each nucleon is governed by the mean field due to all the other nucleons. This concept underlies the Fermi-gas, Hartree-Fock and shell models and has enabled a range of nuclear properties to be calculated, often to surprising accuracy. It gradually became clear, however, that these mean-field models are limited by the effects due to the very strong interactions between the nucleons that occur at short distances; these are the short-range correlations. They are responsible for instance for the high-momentum components in the nucleon momentum dis tribution, and prevent the simultaneous description of the nuclear density and momentum distributions by the same mean field. It thus becomes necessary to develop methods for including the effects of nucleon correlations in nuclei, and these are the main subject of this book. Some related problems of nuclear structure were discussed in an earlier book by the same authors: Nucleon Momentum and Density Distributions in Nuclei (Clarendon Press, Oxford, 1988). The main aim of that book was to study the effects of nucleon-nucleon correlations, both short-range and tensor, on the nucleon momentum distribution, which is particularly sensitive to these correl ations, and on the nucleon density distribution."
This book is the result of a graduate-level "special topics" course I gave at the University of Rochester in 1970. The purpose of the course was to discuss as far as possible all known symmetries in nuclei, with special emphasis on dynamical symmetries. Since there was no comprehensive account of this subject in the literature, I was encouraged to write a review based on my lecture notes. The end result is the present volume. Like the course, the book is intended mainly for graduate students and research workers in nuclear physics. The only prior knowledge required to follow the book is graduate-level quantum mechanics and nuclear physics and hence I believe that it can be useful to both experimental and theoretical nuclear physicists. In addition, the book should prepare a student to read the latest literature on the subject and also train him to do group theoretic work in nuclear physics. The organization of the material in the book is described in Chapter 1.
There are many kinds of nuc1ear data books; however some are too much specialized, while others have an arrangement of information which is inconvenient for students to use. With this book, we want to amend these situations. Handbooks of natural sciences must be exact and fair in their presentation of materials and they must be logical and convenient to use. If the users can develop new ideas or gain new insights from the books, they can be judged as valuable. The role of handbooks is not only to give a systematic representation of past knowledge, but also to serve as a basis for intellectual activity leading to future development. The purpose of this data book arises from the points described above. The chart of the nuc1ides which is frequently consulted by radioisotope users is not always convenient. By comparison, our Periodic Table with Nuc1ides has been devised with this in mind. It has been our experience that properties of a desired nuclide could be found in a much shorter time in the Periodic Table with Nuc1ides than in other nuc1ide charts. Additionally, by placing the -stabi1ity line within the nuc1ides in the table, the users may derive unam biguous ideas on the stability of the nuc1ides and the paths related to the creation of stable elements in the universe."
The 7th International Workshop in the series LASER INTERACTION AND RELATED PLASMA PHENOMENA continued the high standards established by the earlier meetings in this series. It was organized under the directorship of Heinrich Hora and George H. Miley at the Naval Postgraduate School in Monterey, California, with Fred Schwirzke as the local organizer. These workshops have presented many "firsts" in laser plasma interactions and especially in laser fusion. Some presentations provided continuity with the past, most represented advancements; however, in some workshops, progress did not appear to be occurring as rapidly as in others. Therefore, it was a special pleasure that in the present workshop when, on October 30, 1985, Chiyoe Yamanaka disclosed a breakthrough in the generation of fusion neutrons with laser fusion targets. The 7th Workshop also continued to represent other new fields of laser-plasma interaction. The progress reported was most pronounced in the fields of X-ray lasers, laser acceleration of particles by electrostatic double layers in plasmas, and a particle beam technique to solve the geometric problem of muon-catalyzed fusion. The development of laser-plasma interactions at medium to high laser intensities may be seen in its whole complexity from a brief review of prior conferences. At the first Workshop in 1969, a comprehensive review of the field was presented by the speakers with the opening address by N. 1. INTRODUCTION 2 2. CRAYONS COMBUSTIBLES 4 3. CLASSIFICATION DES DETAILS VUS PAR NEUTRONOGRAPHIE 8 4. REPERAGE DES NEUTRONOGRAMMES 12 5. UTILISATION DU RECUEIL 14 6. CONTENU DU RECUEIL 16 7. TERMINOLOGIE 30 8. INSTALLATIONS DE NEUTRONOGRAPHIE A L'INTERIEUR DE LA COMMUNAUTE EUROPEENNE 42 9. REFERENCES 54 10. COLLECTION DES NEUTRONOGRAMMES SUR PAPIER PHOTOGRAPHIQUE (ECHELLE 2:1) ET FILM (ECHELLE 1:1) 55 TABLE OF CONTENTS PREFACE 1. INTRODUCTION 3 2. FUEL PINS 5 3. CLASSIFICATION OF NEUTRON RADIOGRAPHIC FINDINGS 9 4. MARKING OF THE RADIOGRAPHS 13 5. HOW TO USE THE COLLECTION 15 6. CONTENTS OF THE COLLECTION 17 7. TERMINOLOGY 31 8. NEUTRON RADIOGRAPHY INSTALLATIONS IN THE EUROPEAN COMMUNITY 43 9. REFERENCES 54 10. REFERENCE NEUTRON RADIOGRAPHS ON PHOTOGRAPHIC PAPER (SCALE 2:1) AND FILM (SCALE 1:1) 55 PREFACE Although the principles of radiography with neutron beams have been known for some 45 years, their practical application in industry and research is still a rather young field. Norms, standards, and common terms of reference are scarce. One of the main tasks of the Neutron Radiography Working Group (NRWG) -constituted by the Joint Research Centre Petten of the Commission of the European Communities and national nuclear research centres within the European Community -has been to fill this gap.
The sixteenth European Conference on Few Body Problems in Physics has taken place from June 1 to June 6, 1998, in Autrans, a little village in the mountains, close to Grenoble. The Conference follows those organized in Peniscola (1995), Amsterdam (1993), Elba (1991), Uzhgorod (1990) ... The present one has been organized by a group of physicists working in different fields at the University Joseph Fourier of Grenoble who find in this occasion a good opportunity to join their efforts. The core of the organizing committee was nevertheless located at the Institut des Sciences Nucleaires, whose physicists, especially in the group of theoretical physics, have a long tradition in the domain. The Few Body Conference has a natural tendency to be a theoretical one - the exchange about the methods used in different fields is the common point to most participants. It also has a tendency to be a hadronic physics one - the corresponding physics community, perhaps due to the existence of experimen tal facilities devoted to the study of few body systems, is better organized. In preparing the scientific program, we largely relied on the advices of the Inter national Advisory Committee, while avoiding to follow these trends too closely."
This volume contains the proceedings ofthe NATO Advanced Research Workshop 950443 on "Gas lasers-recent development and future prospects". The workshop was held in Moscow, July 2-5, 1995. During the workshop 22 oral presentations and 23 posters havebeen presented. Among the continuously expanding research on new laser systems in the extending spectrum range gas lasers are unique in many ways: the availability of high (average) power in all parts of the spectrum from the far infrared to the vacuum ultraviolet, the homogeneity ofthe active medium with the potential ofhigh beam quality even at high power and their relatively low costs. In the gas laser development one can distinguish the research towards new or improved laboratory devices and the efforts that are devoted to the development of characteristics like reliability, low costs and versatility that make the laser more suitable for industrial purposes. The industrial applications with dedicated devices are not only a natural e"1ension ofthe laser development itselfbut moreover they have nowadays a strong stimulating effecton this development. The workshop offered the participants many opportunities to discuss fundamental and technological problems of different types of lasers connected with beam proporties, excitation technology, new pumping schemes, pulsed power, construction materials and new codes for the description of laser operation. The interest was especially directed towards high power systems operating in the ultraviolet and vacuum ultraviolet, the radio'frequency discharge physics for waveguide structures and the achievement in molecular CO and CO systems.
In these days of specialization it is important to bring together physicists working in diverse areas to exchange and share their ideas and excitement. This leads to cross-fertilization of ideas, and it enriches, as in biological systems, a specialized field with new strength, development and direction derived from another area. Although this might be an uncommon thing, it is an important step in our under standing of the physical world around us, which is, after aIl, the main purpose of physics. The seed for this conference was really sowed when one of us (MB) and Mr. Manngard showed some a-scattering data at backward angles to FBM one summer about four years ago. That occasion led to a long research collaboration between the Abo Akademi physicists and other scientists in several countries. The actual idea to explore the possibility of holding a conference, however, crystallized in the summer of 1989 during a visit of FBM to Abo Akademi. The final decision to organize a conference was made after MB visited Profes sor Ben Mottelson in Copenhagen and Professor Anagnostatos in Athens. At this point it was recognized that there are similarities as weIl as differences between clustering phenomena in nuclei and systems consisting of atoms. It was therefore conjectured that it could be very stimulating to bring together these groups to exchange their ideas and to leam from each other's fields. A conference along these lines, we hoped, would contribute to an increased mutual understanding."
This book of proceedings collects the papers presented at the Workshop on Diagnostics for ITER, held at Villa Monastero, Varenna (Italy), from August 28 to September 1, 1995. The Workshop was organised by the International School of Plasma Physics "Piero Caldirola. " Established in 1971, the ISPP has organised over fifty advanced courses and workshops on topics mainly related to plasma physics. In particular, courses and workshops on plasma diagnostics (previously held in 1975, 1978, 1982, 1986, and 1991) can be considered milestones in the history of this institution. Looking back at the proceedings of the previous meetings in Varenna, one can appreciate the rapid progress in the field of plasma diagnostics over the past 20 years. The 1995 workshop was co-organised by the Istituto di Fisica del Plasma of the National Research Council (CNR). In contrast to previous Varenna meetings on diagnostics, which have covered diagnostics in present-day tokamaks and which have had a substantial tutorial component, the 1995 workshop concentrated specifically on the problems and challenges of ITER diagnostics. ITER (the International Thennonuclear Experimental Reactor, a joint venture of Europe, Japan, Russia, and the United States, presently under design) will need to measure a wide range of plasma parameters in order to reach and sustain high levels of fusion power. A list of the measurement requirements together with the parameter ranges, target measurement resolutions, and accuracies provides the starting point for selecting a list of candidate diagnostic systems.
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves near a target edge at a distance ( - Lorentz factor, - wave length). Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
A fundamental question in contemporary astrophysics is the origin of the elements. Cosmochemistry seeks to answer when, how and where the chemical elements arose. Quantitative answers to these fundamental questions require a multi-disciplinary approach involving stellar evolution, explosive nucleosynthesis and nuclear reactions in different astrophysical environments. There remain, however, many outstanding problems and cosmochemistry remains a fertile area of research. This book is among the first in recent times to put together the essentials of cosmochemistry, combining contributions from leading astrophysicists in the field. The chapters have been organized to provide a clear description of the fundamentals, an introduction to modern techniques such as computational modelling, and glimpses of outstanding issues.
The Thirteenth European Conference on Few-Body Problems in Phys- ics (European Few-Body Problems XIII) was held at the Elba Internation- al Physics Centre (EIPC) in Marciana Marina, Isola d'Elba, Italy, during September 9-14, 1991. The previous Conferences of the series, promoted by the European Few-Body Physics Research Committee, took place in Budapest (1972), Graz (1973), Tiibingen (1975), Vlieland (1976), Uppsala (1977), Dubna (1979), Sesimbra (1980), Ferrara (1981), Tbilisi (1984), Bala- tonfiired (1985), Fontevraud (1987), and Uzhgorod (1990). The European Few-Body Conferences represent a relevant opportunity for European scientists interested in few-body problems, of summarizing and updating, together with colleagues from countries all over the world, the status of art in this field of research, which ranges from the study of atomic and molecular structure, to nuclear and particle physics. The suc- cess of this series of Conferences, which also represent a bridge between the triennial IUPAP International Conferences on Few-Body Problems in Physics, testifies the relevance reached by few-body physics in various fields and the important theoretical and experimental contributions pro- vided by the European few-body community.
This volume focuses on the human exposures and medical effects studies in the SemipaiatinskJ Altai region of Siberia that were a consequence of the radioactive fallout from nuclear test explosions that took place at the Semipalatinsk Test Site of the former Soviet Union. It contains a detailed account of a NATO Advanced Research Workshop (ARW) devoted to the subject, and a selection of the papers presented. The title of the ARW was "Long-term Consequences of Nuclear Tests for the Environment and Population Health (SemipaiatinskJAltai Case Studies)." The estimated exposures to large numbers of people in the Altai lie in an important dose rate and dose domain. Hence the research reported herein provides new and unique information on the effects of radiation on humans. Also emphasized at the ARW were studies involving fallout from the Pacific Island tests of the U. S. A . . There have been over 2300 nuclear weapon test explosions to date. More than 500 took place in the atmosphere and outer space; the remainder were underground. The atmospheric tests comprise the largest source of anthropogenic radioactivity released into the earth's atmosphere to date. The vast majority, in number and yield, were carried out by the former Soviet Union (FSU) and the United States. Each superpower maintained two primary test sites, one continental primarily for small yield tests, and the other more remote for larger yield tests. For the U. S. A.
This volume contains the Proceedings of the "XXIV. Inter nationale Universitatswochen fur Kernphysik" held in Schlad ming, Austria, in February 1985. It consists of the written versions of the lectures (3-4 hours) given at this winter school and includes also most of the seminars (30-50 minutes) presented. In choosing the topic for the 1985 meeting, our aim was to give an account of the present understanding of the nucleon-nucleon as well as nucleon-antinucleon inter actions. This field, which is of definite relevance in nuclear and particle physics, has witnessed a rapid develop ment in recent times both in theory and experiment. New evidence has emerged in the whole range from low to extremely high energies. It was an exciting experience to bring to gether knowledge from the very domains of nuclear and high energy physics as well as to meet the respective researchers. Thanks to the efforts of the lecturers, who did a splendid job in presenting the lectures and in preparing their lecture notes, a comprehensive insight into the hadronic interaction between nucleons and anti-nucleons was achieved. The lecture notes were reconsidered by the authors after the meeting and are now being published in their final form. The seminars mainly dealt with specific topics currently under investiga tion within this rather wide field. We are grateful to all authors for their efforts, as they made it possible to speed up the publication of these proceedings."
This volume contains the proceedings of the third Euroconference on Atomic Phys ics at Accelerators (APAC 2001), with the title Stored Particles and Fundamental Physics. It was held in Aarhus, Denmark, from September 8 to 13 at the Marselis Hotel located near the beach and the Marselis Woods outside Aarhus, but some of the activities took place at the Department of Physics, University of Aarhus. The conference was sponsored by the Commission of the European Union (Contract No. ERBFMMACT980469) and also by the Danish Research Foundation through ACAP (Aarhus Center for Atomic Physics). The meeting was focused on the application of storage rings for atomic physics, and there are two fairly small rings in Aarhus, ASTRID (Aarhus STorage Ring for Ions,Denmark) and ELISA (ELectrostatic Ion Storage ring, Aarhus). The research at these rings has contributed to the strong position of European Science in this field. Both rings are designed according to unique concepts. ASTRID is a dual purpose ring, which half the time stores electrons for the generation of low-energy synchrotron radiation. The storage of negative particles has also been a unique feature for the application of ASTRID as an ion storage ring. |
You may like...
Democracy Works - Re-Wiring Politics To…
Greg Mills, Olusegun Obasanjo, …
Paperback
Hiking Beyond Cape Town - 40 Inspiring…
Nina du Plessis, Willie Olivier
Paperback
|