![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Physics > Nuclear structure physics
By providing the reader with a foundational background in high spin nuclear structure physics and exploring exciting current discoveries in the field, this book presents new phenomena in a clear and compelling way. The quest for achieving the highest spin states has resulted in some remarkable successes which this monograph will address in comprehensive detail. The text covers an array of pertinent subject matter, including the rotational alignment and bandcrossings, magnetic rotation, triaxial strong deformation and wobbling motion and chirality in nuclei. This book offers a clearly-written and up-to-date treatment of the topics covered. The prerequisites for a proper appreciation are courses in nuclear physics and nuclear models and measurement techniques of observables like gamma-ray energies, intensities, multi-fold coincidences, angular correlations or distributions, linear polarization, internal conversion coefficients, short lifetime (pico-second range) of excited states etc. and instrumentation and data analysis methods.
This volume contains two major articles, one providing a historical retrosp- tive of one of the great triumphs of nuclear physics in the twentieth century and the other providing a didactic introduction to one of the quantitative tools for understanding strong interactions in the twenty-first century. The article by Igal Talmi on "Fifty Years of the Shell Model - the Quest for the Effective Interaction", pertains to a model that has dominated nuclear physics since its infancy and that developed with astonishing results over the next five decades. Talmi is uniquely positioned to trace the history of the Shell Model. He was active in developing the ideas at the shell model's inception, he has been central in most of the subsequent initiatives which expanded, cl- ified and applied the shell model and he has remained active in the field to the present time. Wisely, he has chosen to restrict his review to the domin- ing issue: the choice of the effective interactions among valence nucleons that determine the properties of low lying nuclear energy levels. The treatment of the subject is both bold and novel for our series. The ideas pertaining to the effective interaction for the shell model are elucidated in a historical sequence.
Based on a NATO Advanced Summer Institute, this volume discusses physical models, mathematical formalisms, experimental techniques, and applications for ultrafast dynamics of quantum systems. These systems are used in laser optics, spectroscopy, and utilize monochromaticity, spectral brightness, coherence, power density, and tunability of laser sources.
In this text the author gives a rather complete account of the available experimental information on neutral current reactions as predicted by the standard theory of electroweak interactions. The data, which range from atomic parity violation to the discovery of the W and Z bosons, impressively support the theory as formulated by Glashow, Weinberg and Salam. The experimental data are critically reviewed and related to the standard theory, whose formal essentials are presented in a transparent way. A complete compilation is given of precision measurements of the Weinberg angle. Special attention is paid to high energy electron-positron experiments at PEP and PETRA leading to the most precise value of the Weinberg angle so far made from such experiments. Latest results from the high-statistics deep-inelastic neutrino scattering experiments have been included along with recent measurements of neutrino electron scattering, data and analysis for polarized-electron nucleon scattering, polarized-muon scattering, atomic parity violation and proton-antiproton experiments establishing the nature of the intermediate bosons.
The three articles of the present volume pertain to very different subjects, all ofconsiderable current interest. The first reviews the fascinating history ofthe search for nucleon substructure in the nucleus using the strength ofGamow- Teller excitations. The second deals with deep inelastic lepton scattering as a probe ofthe non-perturbative structure of the nucleon. The third describes the present state ofaffairs for muon catalyzed fusion, an application of nuclear physics which many new experiments have helped to elucidate. This volume certainly illustrates the broad range ofphysics within our field. The article on Nucleon Charge-Exchange Reactions at Intermediate Energy, by Parker Alford and Brian Spicer, reviews recent data which has clarified one of the greatest puzzles of nuclear physics during the past two decades, namely, the "missing strength" in Gamow-Teller (GT) transitions. The nucleon-nucleon interaction contains a GT component which has a low-lying giant resonance. The integrated GT strength is subject to a GT sum rule. Early experiments with (n, p) charge exchange reactions found only about half of the strength, required by the sum rule, in the vicinity of the giant resonance. At the time, new theoretical ideas suggested that the GT strength was especially sensitive to renormalization from effects pertaining to nucleon substructure, particularly the delta excitation of the nucleon in the nucleus.
The XII Max Born Symposium has a special character. It was held in honour th of Jan Lopusza nski on the occasion of his 75 birthday. As a rule the Max Born Symposia organized by the Institute of Theoretical Physics at the University of Wroc law were devoted to well-de ned subjects of contemporary interest. This time, however, the organizers decided to make an exception. Lopusza nski's in?uence on and contribution to the development of th- retical physics at Wrocla w University is highly appreciable. His personality and scienti c achievements gave him authority which he used to the best - vantage of the Institute. In fact we still pro t from his knowledge, experience and judgment. Lopusza nski's scienti c activity extended over about half a century. He successfully participated in research on the most important and fascinating issues of theoretical physics. During his scienti c career he met and made friends with many outstanding physicists who shaped theoretical physics to the present form. For this reason, as well as the coincidence of the approaching end of the century, we thought that it would be interesting and instructive to give the symposium a retrospective character. We decided to trust the speakers' judgment and intuition for the choice of subjects for their talks. We just asked them to give the audience the important message based on their knowledge and experience.
During July-August 1989. a group of 75 physicists from 52 laboratories in 16 countries met in Erice for the 27th Course of the International School of Subnuclear Physics. The countries represented were: Austria. Bulgaria. Canada. China. Denmark. France. the Federal Republic of Germany. Hungary. India. Italy. Pakistan. Poland. Switzerland. United Kingdom. and the Union of the Soviet Socialist Republics and the United States of America. The School was sponsored by the European Physical Society (EPS). the Italian Ministry of Education (MPI). the Italian Ministry of Scientific and Technological Research (MRST). the Sicilian Regional Government (ERS). and the Weizmann Institute of Science. In addition to some crucial problems in the Superworld Theory. developed by S. Ferrara and L. Hall. the School was focused on the most advanced topics which have attracted our attention during the last year. These are of a phenomenological nature: the problem of the spin inside the proton (G. Altarelli). some crucial QCD tests (R. Baldini-Celio and S. Brodsky). the jet phenomenology as predicted by QCD (Y. Dokshitzer); and of basic (therefore by far more difficult to solve) value. such as the understanding of the fundamental constants of Nature (G. Veneziano) and the new ideas on the cosmological constant (A. Stominger and G. Veneziano).
This book is the result of a graduate-level "special topics" course I gave at the University of Rochester in 1970. The purpose of the course was to discuss as far as possible all known symmetries in nuclei, with special emphasis on dynamical symmetries. Since there was no comprehensive account of this subject in the literature, I was encouraged to write a review based on my lecture notes. The end result is the present volume. Like the course, the book is intended mainly for graduate students and research workers in nuclear physics. The only prior knowledge required to follow the book is graduate-level quantum mechanics and nuclear physics and hence I believe that it can be useful to both experimental and theoretical nuclear physicists. In addition, the book should prepare a student to read the latest literature on the subject and also train him to do group theoretic work in nuclear physics. The organization of the material in the book is described in Chapter 1.
The book addresses three major topics in mathematical physics: 1. recent rigorous results in potential theory with appli- cations in particle physics, 2. analyticity in quantum field theory and its applica- tions, and 3. fundamentals and applications of the inverse problem. In addition, the book contains some contributions on questions of general interest in quantum field theory such as nonperturbative solutions of quantum chromodynamics, bifurcation theory applied to chiral symmetry, as well as exactly soluable models. The volume closes with a brief review of geometric approaches to particle physics and a phenomenological discussion of Higgs interactions.
"Nuclear Electrodynamics" quantitatively describes both nuclear electromagnetic properties and processes of the electromagnetic interaction.The main emphasis is on the derivation of basic equations. The book is intended for both theorists and experimentalists specializing in this field. Contents: - Introduction - Electromagnetic Multipole Moments - Interaction Between Nuclei and Electromagnetic Radiation - Electron-Nucleus Interaction (Elastic and Inelastic Scattering) - Electron-Nucleus Interaction (Nuclear Electrodisintegration and Inclusive Processes) - Electromagnetic Interaction between Heavy Charged Particles and Nuclei - References - Subject Index
In these days of specialization it is important to bring together physicists working in diverse areas to exchange and share their ideas and excitement. This leads to cross-fertilization of ideas, and it enriches, as in biological systems, a specialized field with new strength, development and direction derived from another area. Although this might be an uncommon thing, it is an important step in our under standing of the physical world around us, which is, after aIl, the main purpose of physics. The seed for this conference was really sowed when one of us (MB) and Mr. Manngard showed some a-scattering data at backward angles to FBM one summer about four years ago. That occasion led to a long research collaboration between the Abo Akademi physicists and other scientists in several countries. The actual idea to explore the possibility of holding a conference, however, crystallized in the summer of 1989 during a visit of FBM to Abo Akademi. The final decision to organize a conference was made after MB visited Profes sor Ben Mottelson in Copenhagen and Professor Anagnostatos in Athens. At this point it was recognized that there are similarities as weIl as differences between clustering phenomena in nuclei and systems consisting of atoms. It was therefore conjectured that it could be very stimulating to bring together these groups to exchange their ideas and to leam from each other's fields. A conference along these lines, we hoped, would contribute to an increased mutual understanding."
Few-body resonances are in the frontiers of resonance studies. Very similar problems occur in atomic and molecular physics, nuclear physics and high-energy physics. This collection presents the state of the art of the studies of resonance states in these fields and demonstrates their common methodological aspects. Most of the contributions are theoretical, but quite a few are closely linked with experiments through the data they are dealing with.
This is the first volume of a series on a regular up-to-date coverage of important developments in astronomy and astrophysics jointly published by ESO and Springer-Verlag. Here the reader finds a thorough review of the abundances of the elements up to Boron. Special emphasis is laid on primordial abundances of interest to cosmologists in particular, and on stellar production or destruction respectively. The articles written for researchers and graduate students cover theory and most recent data from telescope observations.
This volume reports recent development in nuclear structure physics and closely related topics. Particularly, it centers on new methodologies and recent applications of the nuclear shell model such as quantum Monte Carlo methods, large-scale shell model calculations and microscopic theories of effective interactions. Each review focuses on one fundamental topic closely related to the nuclear shell model. Each topic is covered in sufficient depth and detail to be accessible to a wide audience including nuclear engineers and astrophysicists and those working in various fields of scientific computing and modelling.
This book features tutorial-like chapters on ultrafast intense laser science by world-leading scientists who are active in the rapidly developing interdisciplinary research field. It is written to give a comprehensive survey of all the essential aspects of ultrafast intense laser science. The volume covers theories of atoms and molecules in intense laser fields, high intensity physics scaled to long wavelength, pulse shaping techniques, non-linear optics in the XUV region, ultrafast X-ray spectroscopy, quantum emission and applications, filamentation, and ultraintense-laser matter interaction.
This review gives a brief discussion of the structure of the Standard Model and its quantum corrections for testing the electroweak theory at current and future colliders. The predictions for the vector boson masses, neutrino scattering cross sections, and the Z resonance observables such as the width of the Z resonance, partial widths, effective neutral current coupling constants and mixing angles at the Z peak, are presented. Recent experimental data and their implications for the present status of the Standard Model are compared. Finally, the question of how virtual new physics can influence the predictions for the precision observables and the minimal supersymmetric standard model (MSSM) as a special example of particular theoretical interest are discussed.
The book reviews the current status of tau physics. It addresses the properties of the tau lepton and summarizes results achieved with tau leptons in the fields of precision tests of the Standard Model, investigations of the strong interaction and many searches for new physics beyond the scope of the Standard Model.
Reference Data on Multicharged Ions summarizes spectroscopic and
collisional atomic data for highly charged positive ions:
oscillator strength, energy levels, transition probabilities, cross
sections and rate coefficients of different elementary processes
taking place in hot plasmas.
Micro/nanotribology as a field is concerned with experimental and theoretical investigations of processes ranging from atomic and molecular scales to the microscale, occurring during adhesion, friction, wear, and thin-film lubrication at sliding surfaces. As a field it is truly interdisciplinary, but this confronts the would-be entrant with the difficulty of becoming familiar with the basic theories and applications: the area is not covered in any undergraduate or graduate scientific curriculum. The present work commences with a history of tribology and micro/nanotribology, followed by discussions of instrumentation, basic theories of friction, wear and lubrication on nano- to microscales, and their industrial applications. A variety of research instruments are covered, including a variety of scanning probe microscopes and surface force apparatus. Experimental research and modelling are expertly dealt with, the emphasis throughout being applied aspects.
Contemporary research in atomic and molecular physics concerns itself with studies of interactions of electron, positron, photons, and ions with atoms, molecules, and clusters; interactions of intense ultrashort laser interaction with atoms, molecules, and solids; laser assisted atomic collisions, optical, and magnetic traps of neutral atoms to produce ultracold and dense samples; high resolution atomic spectroscopy and experiments by using synchrotron radiation sources and ion storage rings. In recent years, important advances have been made in the experimental as well as theoretical understanding of atomic and molecular physics. The advances in atomic and molecu lar physics have helped us to understand many other fields, like astrophyics, atmo spheric physics, environmental science, laser physics, surface physics, computational physics, photonics, and electronics. XII National Conference on Atomic and Molecular Physics was held at the Physics Department, M. 1. S. University, Udaipur from 29th Dec. 1998 to 2ndJan. 1999 under the auspices of the Indian Society of Atomic and Molecular Physics. This volume is an outcome of the contributions from the invited speakers at the conference. The volume contains 24 articles contributed by the distinguished scientists in the field. The contrib utors have covered a wide range of topics in the field in which current research is being done. This also reflects the trend of research in this field in Indian universities and research institutes. We are grateful to the national programme committee, national, and local organiz ing committees, and members of the Physics Department and Computer Centre, M. 1.
The Eighth Rochester Conference on Coherence and Quantum Optics was held on the campus of the University of Rochester during the period June 13-16,2001. This volume contains the proceedings of the meeting. The meeting was preceded by an affiliated conference, the International Conference on Quantum Information, with some overlapping sessions on June 13. The proceedings of the affiliated conference will be published separately by the Optical Society of America. A few papers that were presented in common plenary sessions of the two conferences will be published in both proceedings volumes. More than 268 scientists from 28 countries participated in the week long discussions and presentations. This Conference differed from the previous seven in the CQO series in several ways, the most important of which was the absence of Leonard Mandel. Professor Mandel died a few months before the conference. A special memorial symposium in his honor was held at the end of the conference. The presentations from that symposium are included in this proceedings volume. An innovation, that we believe made an important contribution to the conference, was the inclusion of a series of invited lectures chaired by CQO founder Emil Wolf, reviewing the history of the fields of coherence and quantum optics before about 1970. These were given by three prominent participants in the development of the field, C. Cohen-Tannoudji, 1. F. Clauser, and R. I. Glauber.
"A Structural and Vibrational Study of the Chromyl Chlorosulfate,
Fluorosulfate and Nitrate Compounds" presents important studies
related to the structural and vibrational properties on the chromyl
compounds based on Ab-initio calculations. The synthesis and the
study of such properties are of chemical importance because the
stereo-chemistries and reactivities of these compounds are strongly
dependent on the coordination modes that adopt the different
ligands linked to the chromyl group.
"A Structural and Vibrational Investigation into Chromyl Azide,
Acetate, Perchlorate and Thiocyanate Compounds" reviews the
structural and vibrational properties of chromyl azide, acetate,
perchlorate, and thiocyanate from a theoretical point of view by
using Density Functional Theory (DFT) methods. These compounds are
extensively used in organic syntheses and the study of their
structure and spectroscopy has become fundamental.
The first Asia-Pacific Conference on Few-Body Problems in Physics took place from August 23 to August 28, 1999, at the Noda campus of the Sci ence University of Tokyo in Noda-city and Sawayaka Chiba Kenmin Plaza in Kashiwa-city, a suburb of Tokyo close to the Narita-Tokyo International Air port, with the Frontier Research Center for Computation Sciences (FRCCS) of the Science University of Tokyo as the host institute. The High Energy Accel erator Research Organization (KEK), the Institute of Physical and Chemical Research (RIKEN), the Research Center for Nuclear Physics (RCNP)-Osaka University, the Physical Society of Japan, and the Association of Asia Pacific Physical Societies (AAPPS) supported this conference. The conference was initiated in the Asia Pacific area as a counterpart to the successful European Conference on Few-Body Problems in Physics (APFB99), in addition to the International Few-Body Conference Series and the Few Body Gordon Conference series in North America. The Physics of Few-Body Problems covers, as is well known, systems with finite numbers of particles in contrast to many-body systems with very large numbers of particles. Therefore, it covers such wide fields as mesoscopic, atom-molecular, exotic atom, nucleon, hyperon, and quark-gluon physics, plus their applications." |
![]() ![]() You may like...
Replace, Repair, Restore, Relieve…
Winnie Jensen, Ole Kaeseler Andersen, …
Hardcover
R8,577
Discovery Miles 85 770
Cerebral Lateralization and Cognition…
Gillian Forrester, Kristelle Hudry, …
Hardcover
R6,598
Discovery Miles 65 980
Neurotoxicity of Drugs of Abuse, Volume…
Lucio G. Costa, Michael Aschner, …
Hardcover
Experiments and Modeling in Cognitive…
Fabien Mathy, Mustapha Chekaf
Hardcover
|