![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
Building on Mozumder's and Hatano's Charged Particle and Photon Interactions with Matter: Chemical, Physicochemical, and Biological Consequences with Applications (CRC Press, 2004), Charged Particle and Photon Interactions with Matter: Recent Advances, Applications, and Interfaces expands upon the scientific contents of the previous volume by covering state-of-the-art advances, novel applications, and future perspectives. It focuses on relatively direct applications used mainly in radiation research fields as well as the interface between radiation research and other fields. The book first explores the latest studies on primary processes (the physical stage), particularly on the energy deposition spectra and oscillator strength distributions of molecules interacting with charged particles and photons. Other studies discussed include the use of synchrotron radiation in W-value studies and the progress achieved with positrons and muons interacting with matter. It then introduces new theoretical studies on the physicochemical and chemical stages that describe the behavior of electrons in liquid hydrocarbons and the high-LET radiolysis of liquid water. The book also presents new experimental research on the physicochemical and chemical stages with specific characteristics of matter or specific experimental conditions, before covering new experimental studies on the biological stage. The last set of chapters focuses on applications in health physics and cancer therapy, applications to polymers, the applications and interface formation in space science and technology, and applications for the research and development of radiation detectors, environmental conservation, plant breeding, and nuclear engineering. Edited by preeminent scientists and with contributions from an esteemed group of international experts, this volume advances the field by offering greater insight into how charged particles and photons interact with matter. Bringing together topics across a spectrum of scientific and technological areas, it provides clear explanations of the dynamic processes involved in and applications of interface formation.
A Modern Primer in Particle and Nuclear Physics provides a cohesive introduction to the fundamentals of the field and is designed to be accessible to undergraduate students. The textbook provides an ideal entry point and presents the modern concepts, theories, and experiments that explain the elementary constituents and basic forces of the universe. Starting with the basic concepts and definitions, the textbook goes on to cover core developments, such as the links between quantum chromodynamics and nuclear physics, the Higgs Boson, and the first observation of gravitational waves. New concepts are introduced gradually and clarified by intuitive explanations, exercises, and concrete examples linking particle physics to nuclear physics, astrophysics, and gravitation. The book also includes appendices on special relativity and non-relativistic quantum mechanics for those needing a basic grounding in these areas. The text is an expert guide for undergraduate physics students wanting to expand their knowledge, and also provides fascinating insights to graduate students, junior researchers, and physics enthusiasts.
In this volume the physics involved in various astrophysical processes like the synthesis of light and heavier elements, explosive burning processes, core collapse supernova etc have been critically addressed with minimum mathematical derivations so as to suit all faculties of the readers. For graduate students there are solved problems with exercises at the end of each chapter, for researchers some recent works on the calculation of physical parameters of astrophysical importance like the calculation of Sfactors at low energies have been included, and for amateur readers there are lot of history, information and discussion on the astronuclear phenomenon. Please note: Taylor & Francis does not sell or distribute the Hardback in India, Pakistan, Nepal, Bhutan, Bangladesh and Sri Lanka.
This is the story of a new science. Beginning with an obscure
discovery in 1896, radioactivity led researchers on a quest for
understanding that ultimately confronted the intersection of
knowledge and mystery.
This book describes the fundamentals of particle detectors as well as their applications. Detector development is an important part of nuclear, particle and astroparticle physics, and through its applications in radiation imaging, it paves the way for advancements in the biomedical and materials sciences. Knowledge in detector physics is one of the required skills of an experimental physicist in these fields. The breadth of knowledge required for detector development comprises many areas of physics and technology, starting from interactions of particles with matter, gas- and solid-state physics, over charge transport and signal development, to elements of microelectronics. The book's aim is to describe the fundamentals of detectors and their different variants and implementations as clearly as possible and as deeply as needed for a thorough understanding. While this comprehensive opus contains all the materials taught in experimental particle physics lectures or modules addressing detector physics at the Master's level, it also goes well beyond these basic requirements. This is an essential text for students who want to deepen their knowledge in this field. It is also a highly useful guide for lecturers and scientists looking for a starting point for detector development work.
In recent years there have been great advances in the fields of laboratory and astronomical spectroscopy. These have been equally matched by large-scale computations using state-of-the-art theoretical methods. The accurate atomic opacities that are available today play a great role in the field of biomedical research using nanotechnology. The proceedings of the "International Conference on Recent Advances in Spectroscopy: Theoretical, Experimental and Astrophysical Perspectives" contain both invited and contributory papers, which give the most recent results by the peers in the areas of theoretical and experimental atomic physics as well as observational astrophysics.
This is the resource that engineers turn to in the study of radiation detection. The fourth edition takes into account the technical developments that continue to enhance the instruments and techniques available for the detection and spectroscopy of ionizing radiation. New coverage is presented on ROC curves, micropattern gas detectors, new sensors for scintillation light, and the excess noise factor. Revised discussions are also included on TLDs and cryogenic spectrometers, radiation backgrounds, and the VME standard. Engineers will gain a strong understanding of the field with this updated book.
This is the physical chemistry textbook for students with an affinity for computers! It offers basic and advanced knowledge for students in the second year of chemistry masters studies and beyond. In seven chapters, the book presents thermodynamics, chemical kinetics, quantum mechanics and molecular structure (including an introduction to quantum chemical calculations), molecular symmetry and crystals. The application of physical-chemical knowledge and problem solving is demonstrated in a chapter on water, treating both the water molecule as well as water in condensed phases. Instead of a traditional textbook top-down approach, this book presents the subjects on the basis of examples, exploring and running computer programs (Mathematica (R)), discussing the results of molecular orbital calculations (performed using Gaussian) on small molecules and turning to suitable reference works to obtain thermodynamic data. Selected Mathematica (R) codes are explained at the end of each chapter and cross-referenced with the text, enabling students to plot functions, solve equations, fit data, normalize probability functions, manipulate matrices and test physical models. In addition, the book presents clear and step-by-step explanations and provides detailed and complete answers to all exercises. In this way, it creates an active learning environment that can prepare students for pursuing their own research projects further down the road. Students who are not yet familiar with Mathematica (R) or Gaussian will find a valuable introduction to computer-based problem solving in the molecular sciences. Other computer applications can alternatively be used. For every chapter learning goals are clearly listed in the beginning, so that readers can easily spot the highlights, and a glossary in the end of the chapter offers a quick look-up of important terms.
The Black Book of Quantum Chromodynamics is an in-depth introduction to the particle physics of current and future experiments at particle accelerators. The book offers the reader an overview of practically all aspects of the strong interaction necessary to understand and appreciate modern particle phenomenology at the energy frontier. It assumes a working knowledge of quantum field theory at the level of introductory textbooks used for advanced undergraduate or in standard postgraduate lectures. The book expands this knowledge with an intuitive understanding of relevant physical concepts, an introduction to modern techniques, and their application to the phenomenology of the strong interaction at the highest energies. Aimed at graduate students and researchers, it also serves as a comprehensive reference for LHC experimenters and theorists. This book offers an exhaustive presentation of the technologies developed and used by practitioners in the field of fixed-order perturbation theory and an overview of results relevant for the ongoing research programme at the LHC. It includes an in-depth description of various analytic resummation techniques (which form the basis for our understanding of the QCD radiation pattern and how strong production processes manifest themselves in data) and a concise discussion of numerical resummation through parton showers. This forms the basis of event generators for the simulation of LHC physics, and their matching and merging with fixed-order matrix elements. It also gives a detailed presentation of the physics behind the parton distribution functions (which are a necessary ingredient for every calculation relevant for physics at hadron colliders such as the LHC) and an introduction to non-perturbative aspects of the strong interaction, including inclusive observables such as total and elastic cross sections, and non-trivial effects such as multiple parton interactions and hadronization. The book concludes with a useful overview contextualising data from previous experiments such as the Tevatron and the Run I of the LHC which have shaped our understanding of QCD at hadron colliders.
The third edition of a classic book, Basic Ideas and Concepts in Nuclear Physics sets out in a clear and consistent manner the various elements of nuclear physics. Divided into four main parts: the constituents and characteristics of the nucleus; nuclear interactions, including the strong, weak and electromagnetic forces; an introduction to nuclear structure; and recent developments in nuclear structure research, the book delivers a balanced account of both theoretical and experimental nuclear physics. In addition to the numerous revisions and updates to the previous edition to capture the developments in the subject over the last five years, the book contains a new chapter on the structure and stability of very light nuclei. As with the previous edition the author retains a comprehensive set of problems and the book contains an extensive and well-chosen set of diagrams. He keeps the book up to date with recent experimental and theoretical research, provides mathematical details as and when necessary, and illustrates topics with box features containing examples of recent experimental and theoretical research results.
This text gives an introduction to particle physics at a level accessible to advanced undergraduate students. It is based on lectures given to 4th year physics students over a number of years, and reflects the feedback from the students. The aim is to explain the theoretical and experimental basis of the Standard Model (SM) of Particle Physics with the simplest mathematical treatment possible. All the experimental discoveries that led to the understanding of the SM relied on particle detectors and most of them required advanced particle accelerators. A unique feature of this book is that it gives a serious introduction to the fundamental accelerator and detector physics, which is currently only available in advanced graduate textbooks. The mathematical tools that are required such as group theory are covered in one chapter. A modern treatment of the Dirac equation is given in which the free particle Dirac equation is seen as being equivalent to the Lorentz transformation. The idea of generating the SM interactions from fundamental gauge symmetries is explained. The core of the book covers the SM. The tools developed are used to explain its theoretical basis and a clear discussion is given of the critical experimental evidence which underpins it. A thorough account is given of quark flavour and neutrino oscillations based on published experimental results, including some from running experiments. A simple introduction to the Higgs sector of the SM is given. This explains the key idea of how spontaneous symmetry breaking can generate particle masses without violating the underlying gauge symmetry. A key feature of this book is that it gives an accessible explanation of the discovery of the Higgs boson, including the advanced statistical techniques required. The final chapter gives an introduction to LHC physics beyond the standard model and the techniques used in searches for new physics. There is an outline of the shortcomings of the SM and a discussion of possible solutions and future experiments to resolve these outstanding questions. For updates, new results, useful links as well as corrections to errata in this book, please see the book website maintained by the authors: https://pplhcera.physics.ox.ac.uk/
Forget everything you thought you knew about reality. The world is a seriously bizarre place. Things can exist in two places at once and travel backwards and forwards in time. Waves and particles are one and the same, and objects change their behaviour according to whether they are being watched. This is not some alternative universe but the realm of the very small, where quantum mechanics rules. In this weird world of atoms and their constituents, our common sense understanding of reality breaks down - yet quantum mechanics has never failed an experimental test. What does it all mean? For all its weirdness, quantum mechanics has given us many practical technologies including lasers and the transistors that underlie computers and all digital technology. In the future, it promises computers more powerful than any built before, the ability to communicate with absolute privacy, and even quantum teleportation. The Quantum World explores the past, present and future of quantum science, its applications and mind-bending implications. Discover how ideas from quantum mechanics are percolating out into the vast scale of the cosmos - perhaps, in the future, to reveal a new understanding of the big bang and the nature of space and time. ABOUT THE SERIES New Scientist Instant Expert books are definitive and accessible entry points to the most important subjects in science; subjects that challenge, attract debate, invite controversy and engage the most enquiring minds. Designed for curious readers who want to know how things work and why, the Instant Expert series explores the topics that really matter and their impact on individuals, society, and the planet, translating the scientific complexities around us into language that's open to everyone, and putting new ideas and discoveries into perspective and context.
Dieses Open-Access-Buch beschreibt das Leben und die Leistungen des norwegischen Ingenieurs und Physikers Rolf Wideroe. Zu seinen vielen bahnbrechenden Leistungen auf dem Gebiet der Beschleunigerphysik gehoeren unter anderem das Betatron und der Linearbeschleuniger, deren Konzepte er in seiner 27-seitigen Doktorarbeit veroeffentlichte. Das Betatron revolutionierte die Bereiche der Krebsbehandlung durch Strahlentherapie und durch nicht-desktruktive Tests. Krankenhauser auf der ganzen Welt setzen Wideroes Maschine ein, und auch die heutigen modernen Gerate zur Strahlenbehandlung basieren auf seinen Erfindungen. Die jungste Renaissance des Linearbeschleunigers sorgt fur beispiellose Roentgenintensitaten bei Freien-Elektronen-Laser-Anlagen, die weltweit in Betrieb sind. Wideroes Geschichte enthalt eine gehoerige Portion Dramatik, insbesondere wahrend des Zweiten Weltkriegs, als sowohl die Deutschen als auch die Alliierten um seine Mitarbeit buhlten. Der Physiker hatte fuhrende Positionen in multinationalen Industriekonzernen inne und war einer der Berater beim Bau des weltgroessten Kernforschungszentrums CERN in der Schweiz. Er erwarb uber 200 Patente, erhielt mehrere Ehrendoktorwurden und eine Reihe internationaler Auszeichnungen. Die Autorin, Journalistin und Produzentin von Fernsehdokumentationen, erzahlt in diesem Werk eine fesselnde Wissenschaftsgeschichte. Wahrend ihrer Recherche hatte sie in mehreren Landern Zugang zu bisher verschlossenen Archiven erhalten, die eine Fulle von neuem Material und Erkenntnissen, insbesondere im Zusammenhang mit den Kriegsjahren, lieferten. Das E-Book dieses Werks ist als Open-Access-Veroeffentlichung auf springer.com erhaltlich. Die Autorin Aashild Sorheim ist Autorin, Wissenschaftsjournalistin und Produzentin. Sie arbeitete als Journalistin unter anderem fur Aftenposten, Norwegens groesste Tageszeitung, den Norwegischen Rundfunk NRK sowie diverse Forschungsinstitute. Sie ist Grunderin der "Nationalen Stiftung fur die Verbreitung der Forschung". Von 1985 bis 1990 war sie Leiterin der Informationsdienste des koeniglich-norwegischen Rates fur wissenschaftliche und industrielle Forschung. Ihre TV-Dokumentation "Immer Bruder. Rolf und Viggo Wideroe wurde 2016 ausgestrahlt.
Taking the reader through the underlying principles of molecular translational dynamics, this book outlines the ways in which magnetic resonance, through the use of magnetic field gradients, can reveal those dynamics. The measurement of diffusion and flow, over different length and time scales, provides unique insight regarding fluid interactions with porous materials, as well as molecular organisation in soft matter and complex fluids. The book covers both time and frequency domain methodologies, as well as advances in scattering and diffraction methods, multidimensional exchange and correlation experiments and orientational correlation methods ideal for studying anisotropic environments. At the heart of these new methods resides the ubiquitous spin echo, a phenomenon whose discovery underpins nearly every major development in magnetic resonance methodology. Measuring molecular translational motion does not require high spectral resolution and so finds application in new NMR technologies concerned with 'outside the laboratory' applications, in geophysics and petroleum physics, in horticulture, in food technology, in security screening, and in environmental monitoring.
"In an age in which the inexhaustible power of scientific technology makes all things possible, it remains to be seen where we will draw the line, where we will be able to say, here are possibilities that wisdom suggest we avoid." First published to great acclaim in 1986, Langdon Winner's groundbreaking exploration of the political, social, and philosophical implications of technology is timelier than ever. He demonstrates that choices about the kinds of technical systems we build and use are actually choices about who we want to be and what kind of world we want to create--technical decisions are political decisions, and they involve profound choices about power, liberty, order, and justice. A seminal text in the history and philosophy of science, this new edition includes a new chapter, preface, and postscript by the author.
Describing the processes in stars which produce the chemical elements for planets and life, this book shows how similar processes may be reproduced in laboratories using exotic beams, and how these results can be analyzed. Beginning with one-channel scattering theory, the book builds up to multi-channel reactions. Emphasis is placed on using transfer and breakup reactions to probe structure and predict capture processes, as well as R-matrix methods for modeling compound nucleus dynamics described by Hauser-Feshbach methods. Practical applications are prominent in this book, confronting theory predictions with data throughout. The associated reaction program Fresco is described, allowing readers to apply the methods to practical cases. Each chapter ends with exercises so readers can test their understanding of the materials covered. Supplementary materials at www.cambridge.org/9780521856355 include the Fresco program, input and output files for the examples given in the book, and hints and graphs related to the exercises.
The first nuclear engineers emerged from the Manhattan Project in the USA, UK and Canada, but remained hidden behind security for a further decade. Cosseted and cloistered by their governments, they worked to explore applications of atomic energy at a handful of national labs. This unique bottom-up history traces how the identities of these unusually voiceless experts - forming a uniquely state-managed discipline - were shaped in the context of pre-war nuclear physics, wartime industrial management, post-war politics and utopian energy programmes. Even after their eventual emergence at universities and companies, nuclear workers carried the enduring legacy of their origins. Their shared experiences shaped not only their identities, but our collective memories of the late twentieth century. And as illustrated by the Fukushima accident seven decades after the Manhattan project began, this book explains why they are still seen conflictingly as selfless heroes or as mistrusted guardians of a malevolent genie.
The tokamak (a doughnut-shaped vacuum chamber surrounded by
magnetic coils) is the principal tool in controlled fusion
research. This book acts as an introduction to the subject and a
basic reference for theory, definitions, equations, and
experimental results. Since the first introductory account of
tokamaks in 1987, when the tokamak had become the predominant
device in the attempt to achieve a useful power source from
thermonuclear fusion, and the developments and advances in the
subject covered in the second edition in 1997, following
substantial research on large tokamaks (the long awaited
achievement of significant amounts of fusion power and the problems
involved in designing and building a tokamak reactor), the emphasis
has been on preparing the ground for an experimental reactor. In
addition, there have been further significant advances in
understanding plasma behaviour, such as the wider experience of
internal transport barriers, the appreciation of the role of
tearing models driven by neoclassical effects and insights from
turbulence simulations.
Atoms in strong radiation fields are interesting objects for study, and the research field that concerns itself with this study is a comparatively young one. For a long period after the ~scovery of the photoelectric effect. it was not possible to generate electro magnetic fields that did more than perturb the atom only slightly, and (first-or~er) perturbation theory could perfectly explain what was going on at those low intensities. The development of the pulsed laser bas changed this state of affairs in a rather dramatic way, and fields can be applied that really have a large, or even dominant influence on atomic structure. In the latter case, w~ speak of super-intense fields. Since the interaction between atoms and electromagnetic waves is characterized by many parameters other than the light intensity, such as frequency, iQnization potential, orbit time, etc., it is actually quite difficult to define what is exactly meant by the term 'super-intense'. Obviously the term does not have an absolute meaning, and intensity should always be viewed in relation to other properties of the system. An atom in a radiation field can thus best be described in terms of various ratios of the quantities involved. The nature of the system sometimes drastically changes if the value of one of these parameters exceeds a certain critical value, and the new regime could be called super-intense with respect to that parameter.
Taking the reader through the underlying principles of molecular
translational dynamics, Translational Dynamics and Magnetic
Resonance outlines the ways in which magnetic resonance, through
the use of magnetic field gradients, can reveal those dynamics. The
measurement of diffusion and flow, over different length and time
scales, provides unique insight regarding fluid interactions with
porous materials, as well as molecular organization in soft matter
and complex fluids.
The book is based on the lectures delivered at the XCIII Session of
the Ecole de Physique des Houches, held in August, 2009. The aim of
the event was to familiarize the new generation of PhD students and
postdoctoral fellows with the principles and methods of modern
lattice field theory, which aims to resolve fundamental,
non-perturbative questions about QCD without uncontrolled
approximations.
Deep Inelastic Scattering provides an up-to-date, self-contained
account of deep inelastic scattering in high-energy physics,
intended for graduate students and physicists new to the subject.
It covers the classic results which led to the quark-parton model
of hadrons and the establishment of quantum chromodynamics as the
theory of the strong nuclear force, in addition to new vistas in
the subject opened up by the electron-proton collider HERA. The
extraction of parton momentum distribution functions, a key input
for physics at hadron colliders such as the Tevatron at Fermi Lab
and the Large Hadron Collider at CERN, is described in detail. The
challenges of the HERA data at 'low x' are described and possible
explanations in terms of gluon dynamics and other models outlined.
It began with plutonium, the first element ever manufactured in quantity by humans. Fearing that the Germans would be the first to weaponise the atom, the United States marshalled brilliant minds and seemingly inexhaustible bodies to find a way to create a nuclear chain reaction of inconceivable explosive power. In a matter of months, the Hanford nuclear facility was built to produce the enigmatic and deadly new material that would fuel atomic bombs. In the desert of eastern Washington State, far from prying eyes, scientists Glenn Seaborg, Enrico Fermi and thousands of others-the physicists, engineers, labourers and support staff at the facility-manufactured plutonium for the bomb dropped on Nagasaki, and for the bombs in the current American nuclear arsenal, enabling the construction of weapons with the potential to end human civilisation. With his characteristic blend of scientific clarity and storytelling, Steve Olson asks why Hanford has been largely overlooked in histories of the Manhattan Project and the Cold War. Olson, who grew up just twenty miles from Hanford's B Reactor, recounts how a small Washington town played host to some of the most influential scientists and engineers in American history as they sought to create the substance at the core of the most destructive weapons ever created. The Apocalypse Factory offers a new generation this dramatic story of human achievement and ultimately, of lethal hubris.
This textbook brings together nuclear and particle physics, presenting a balanced overview of both fields as well as the interplay between the two. The theoretical as well as the experimental foundations are covered, providing students with a deep understanding of the subject. In-chapter exercises ranging from basic experimental to sophisticated theoretical questions provide an important tool for students to solidify their knowledge. Suitable for upper undergraduate courses in nuclear and particle physics as well as more advanced courses, the book includes road maps guiding instructors on tailoring the content to their course. Online resources including color figures, tables, and a solutions manual complete the teaching package. This textbook will be essential for students preparing for further study or a career in the field who require a solid grasp of both nuclear and particle physics.
This book is on inertial confinement fusion, an alternative way to
produce electrical power from hydogen fuel by using powerful lasers
or particle beams. It involves the compression of tiny amounts
(micrograms) of fuel to thousands times solid density and pressures
otherwise existing only in the center of stars. Thanks to advances
in laser technology, it is now possible to produce such extreme
states of matter in the laboratory. Recent developments have
boosted laser intensities again with new possibilities for laser
particle accelerators, laser nuclear physics, and fast ignition of
fusion targets. This is a reference book for those working on beam
plasma physics, be it in the context of fundamental research or
applications to fusion energy or novel ultrabright laser sources.
The Physics of Inertial Fusion combines quite different areas of
physics: beam target interaction, dense plasmas, hydrodynamic
implosion and instabilities, radiative energy transfer as well as
fusion reactions. Particular attention is given to simple and
useful modelling, including dimensional analysis and similarity
solutions. Both authors have worked in this field for more than 20
years. They want to address in particular those teaching this topic
to students and all those interested in understanding the technical
basis. |
You may like...
Niels Bohr - Collected Works, Volume 13…
Finn Aaserud
Hardcover
Multiscale Modeling of Vascular Dynamics…
Huilin Ye, Zhiqiang Shen, …
Paperback
R750
Discovery Miles 7 500
|