![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
In this work the question whether noncommutative geometry allows for supersymmetric theories is addressed. Noncommutative geometry has seen remarkable applications in high energy physics, viz. the geometrical interpretation of the Standard Model, however such a question has not been answered in a conclusive way so far.The book starts with a systematic analysis of the possibilities for so-called almost-commutative geometries on a 4-dimensional, flat background to exhibit not only a particle content that is eligible for supersymmetry, but also have a supersymmetric action. An approach is proposed in which the basic `building blocks' of potentially supersymmetric theories and the demands for their action to be supersymmetric are identified. It is then described how a novel kind of soft supersymmetry breaking Lagrangian arises naturally from the spectral action. Finally, the above formalism is applied to explore the existence of a noncommutative version of the minimal supersymmetric Standard Model.This book is intended for mathematical/theoretical physicists with an interest in the applications of noncommutative geometry to supersymmetric field theories.
'Everything about this story is astounding' Bryan Appleyard, Sunday Times "Trinity" was the codename for the test explosion of the atomic bomb in New Mexico on 16 July 1945. Trinity is now also the extraordinary story of the bomb's metaphorical father, Rudolf Peierls; his intellectual son, the atomic spy, Klaus Fuchs, and the ghosts of the security services in Britain, the USA and USSR. Against the background of pre-war Nazi Germany, the Second World War and the following Cold War, the book traces how Peierls brought Fuchs into his family and his laboratory, only to be betrayed. It describes in unprecedented detail how Fuchs became a spy, his motivations and the information he passed to his Soviet contacts, both in the UK and after he went with Peierls to join the Manhattan Project at Los Alamos in 1944. Frank Close is himself a distinguished nuclear physicist: uniquely, the book explains the science as well as the spying. Fuchs returned to Britain in August 1946 still undetected and became central to the UK's independent effort to develop nuclear weapons. Close describes the febrile atmosphere at Harwell, the nuclear physics laboratory near Oxford, where many of the key players were quartered, and the charged relationships which developed there. He uncovers fresh evidence about the role of the crucial VENONA signals decryptions, and shows how, despite mistakes made by both MI5 and the FBI, the net gradually closed around Fuchs, building an intolerable pressure which finally cracked him. The Soviet Union exploded its first nuclear device in August 1949, far earlier than the US or UK expected. In 1951, the US Congressional Committee on Atomic Espionage concluded, 'Fuchs alone has influenced the safety of more people and accomplished greater damage than any other spy not only in the history of the United States, but in the history of nations'. This book is the most comprehensive account yet published of these events, and of the tragic figure at their centre.
The dynamics of nuclear structures described in this book furnish the basis for a comprehensive understanding of how the higher-order organization and function of the nucleus is established and how it correlates with the expression of a variety of vital activities such as cell proliferation and differentiation. The resulting volume creates an invaluable source of reference for researchers in the field.
I have been teaching courses on experimental techniques in nuclear and particle physics to master students in physics and in engineering for many years. This book grew out of the lecture notes I made for these students. The physics and engineering students have rather different expectations of what such a course should be like. I hope that I have nevertheless managed to write a book that can satisfy the needs of these different target audiences. The lectures themselves, of course, need to be adapted to the needs of each group of students. An engineering student will not qu- tion a statement like "the velocity of the electrons in atoms is ?1% of the velocity of light", a physics student will. Regarding units, I have written factors h and c explicitly in all equations throughout the book. For physics students it would be preferable to use the convention that is common in physics and omit these constants in the equations, but that would probably be confusing for the engineering students. Physics students tend to be more interested in theoretical physics courses. However, physics is an experimental science and physics students should und- stand how experiments work, and be able to make experiments work.This is an open access book.
Studying the interactions between heavy hydrogen isotopes and hydride forming metals or intermetallic compounds (IMC) is of importance for both fundamental and applied sciences. These systems offer, for example, the possibility of technical hydrogen isotope separation due to their considerable isotope effects. In addition, quite a lot of problems of hydrogen recovery, hydrogen purification, and tritium storage can be solved. This review deals with theoretical aspects of the interaction of heavy hydrogen isotopes with metals and IMC, and contains detailed information on phase and isotopic equilibrium and of the kinetics of isotope exchange in systems with hydride phases. Numerical data and results from theoretical and experimental studies are presented as well.
This book primarily focuses on the fundamentals of and new developments in electrochemiluminescence (ECL), presenting high-quality content and explicitly aiming to summarize and disseminate the current state-of-the-art. The topics covered include the fundamental theory, mechanism, types of reactions involved, and the instrumental techniques. The book also examines the applications of ECL in many of the emerging fields of science, such as bioanalytical, analytical, clinical, pharmaceutical, forensic, military, microchip, TAS, and LED. It will be invaluable to bioanalysts, drug analysts, pharmaceutical researchers and other professionals worldwide, as well as to other interested readers.
A standard view of elementary particles and forces is that they determine everything else in the rest of physics, the whole of chemistry, biology, geology, physiology and perhaps even human behavior.This reductive view of physics is popular among some physicists. Yet, there are other physicists who argue this is an oversimplified and that the relationship of elementary particle physics to these other domains is one of emergence. Several objections have been raised from physics against proposals for emergence (e.g., that genuinely emergent phenomena would violate the standard model of elementary particle physics, or that genuine emergence would disrupt the lawlike order physics has revealed). Many of these objections rightly call into question typical conceptions of emergence found in the philosophy literature. This book explores whether physics points to a reductive or an emergent structure of the world and proposes a physics-motivated conception of emergence that leaves behind many of the problematic intuitions shaping the philosophical conceptions. Examining several detailed case studies reveal that the structure of physics and the practice of physics research are both more interesting than is captured in this reduction/emergence debate. The results point to stability conditions playing a crucial though underappreciated role in the physics of emergence. This contextual emergence has thought-provoking consequences for physics and beyond, and will be of interest to physics students, researchers, as well as those interested in physics.
"A Structural and Vibrational Study of the Chromyl Chlorosulfate,
Fluorosulfate and Nitrate Compounds" presents important studies
related to the structural and vibrational properties on the chromyl
compounds based on Ab-initio calculations. The synthesis and the
study of such properties are of chemical importance because the
stereo-chemistries and reactivities of these compounds are strongly
dependent on the coordination modes that adopt the different
ligands linked to the chromyl group.
This volume considers experimental and theoretical dielectric studies of the structure and dynamics of complex systems. Complex systems constitute an almost universal class of materials including associated liquids, polymers, biomolecules, colloids, porous materials, doped ferroelectric crystals, nanomaterials, etc. These systems are characterized by a new "mesoscopic" length scale, intermediate between molecular and macroscopic. The mesoscopic structures of complex systems typically arise from fluctuations or competing interactions and exhibit a rich variety of static and dynamic behaviour. This growing field is interdisciplinary; it complements solid state and statistical physics, and overlaps considerably with chemistry, chemical engineering, materials science, and biology. A common theme in complex systems is that while such materials are disordered on the molecular scale and homogeneous on the macroscopic scale, they usually possess a certain degree of order on an intermediate, or mesoscopic, scale due to the delicate balance of interaction and thermal effects. In the present Volume it is shown how the dielectric spectroscopy studies of complex systems can be applied to determine both their structures and dynamics.
Molecular properties and reactions are controlled by electrons in the molecules. Electrons had been thought to be particles. Quantum mechanics showed that el- trons have properties not only as particles but also as waves. A chemical theory is required to think about the wave properties of electrons in molecules. These prop- ties are well represented by orbitals, which contain the amplitude and phase ch- acteristics of waves. This volume is a result of our attempt to establish a theory of chemistry in terms of orbitals - A Chemical Orbital Theory. The amplitude of orbitals represents a spatial extension of orbitals. An orbital strongly interacts with others at the position and in the direction of great extension. Orbital amplitude controls the reactivities and selectivities of chemical reactions. In the first paper on frontier orbital theory by Fukui the amplitude appeared in the form of its square, i.e., the density of frontier electrons in 1952 (Scheme 1). Orbital mixing rules were developed by Libit and Hoffmann and by Inagaki and Fukui in 1974 and Hirano and Imamura in 1975 to predict magnitudes of orbital amplitudes (Scheme 2) for understanding and designing stereoselective reactions.
The last twenty years have witnessed an enormous development of nuclear physics. A large number of data have accumulated and many experimental facts are known. As the experimental techniques have achieved greater and greater perfection, the theoretical analysis and interpretation of these data have become correspondingly more accurate and detailed. The development of nuclear physics has depended on the development of physics as a whole. While there were interesting speculations about nuclear constitution as early as 1922, it was impossible to make any quantitative theory of even the simplest nucleus until the discovery of quantum mechanics on the one hand, and the development of experimental methods sufficiently sensitive to detect the presence of a neutral particle (the neutron) on the other hand. The further development of our understanding of the nucleus has depended, and still depends, on the development of ever more powerful experimental techniques for measuring nuclear properties and more powerful theoretical techniques for correlating these properties. Practically every "simple," "reasonable," and "plausible" assumption made in theoretical nuclear physics has turned out to be in need of refinement; and the numerous attempts to derive nuclear forces and the properties of nuclei from a more" fundamental" approach than the analysis of the data have proved unsuccessful so far. Nuclear physics is by no means a finished edifice.
This fresh and original text on quantum mechanics focuses on: the development of numerical methods for obtaining specific results; the presentation of group theory and the systematic use of operators; the introduction of the functional integral and its applications in approximation; the discussion of distant correlations and experimental measurements. Numerous exercises with hints and solutions, examples and applications, and a guide to key references help the student to work with the text.
Our current understanding of elementary particles and their interactions emerged from break-through experiments. This book presents these experiments, beginning with the discoveries of the neutron and positron, and following them through mesons, strange particles, antiparticles, and quarks and gluons. This second edition contains new chapters on the W and Z bosons, the top quark, B-meson mixing and CP violation, and neutrino oscillations. This book provides an insight into particle physics for researchers, advanced undergraduate and graduate students. Throughout the book, the fundamental equations required to understand the experiments are derived clearly and simply. Each chapter is accompanied by reprinted articles and a collection of problems with a broad range of difficulty.
The development of nuclear weapons during the Manhattan Project is one of the most significant scientific events of the twentieth century. This revised and updated 4th edition explores the challenges that faced the scientists and engineers of the Manhattan Project. It gives a clear introduction to fission weapons at the level of an upper-year undergraduate physics student by examining the details of nuclear reactions, their energy release, analytic and numerical models of the fission process, how critical masses can be estimated, how fissile materials are produced, and what factors complicate bomb design. An extensive list of references and a number of exercises for self-study are included. Revisions to this fourth edition include many upgrades and new sections. Improvements are made to, among other things, the analysis of the physics of the fission barrier, the time-dependent simulation of the explosion of a nuclear weapon, and the discussion of tamped bomb cores. New sections cover, for example, composite bomb cores, approximate methods for various of the calculations presented, and the physics of the polonium-beryllium "neutron initiators" used to trigger the bombs. The author delivers in this book an unparalleled, clear and comprehensive treatment of the physics behind the Manhattan project.
Metallic (magnetic and non-magnetic) nanocrystalline materials have been known for over ten years but only recent developments in the research into those complex alloys and their metastable amorphous precursors have created a need to summarize the most important accomplishments in the field. This book is a collection of articles on various aspects of metallic nanocrystalline materials, and an attempt to address this above need. The main focus of the papers is put on the new issues that emerge in the studies of nanocrystalline materials, and, in particular, on (i) new compositions of the alloys, (ii) properties of conventional nanocrystalline materials, (iii) modeling and simulations, (iv) preparation methods, (v) experimental techniques of measurements, and (vi) different modern applications. Interesting phenomena of the physics of nanocrystalline materials are a consequence of the effects induced by the nanocrystalline structure. They include interface physics, the influence of the grain boundaries, the averaging of magnetic anisotropy by exchange interactions, the decrease in exchange length, and the existence of a minimum two-phase structure at the atomic scale. Attention is also paid to the special character of the local atomic ordering and to the corresponding interatomic bonding as well as to anomalies and particularities of electron density distributions, and to the formation of metastable, nanocrystalline (or quasi-crystalline) phases built from exceptionally small grains with special properties. Another important focus of attention are new classes of materials which are not based on new compositions, but rather on the original and special crystalline structure in the nanoscale.
The volume Radiological Protection is not only a compilation of numerical data and functional relationships for practical purposes. Rather a comprehensive accompanying text is intended to impart to the scientific or professional user of Radiological Protection both data, the concepts and scientific bases of the discipline devoted to prevention of health risks to man from exposure to ionizing radiations and radionuclides. It contains contributions of experts internationally qualified in scientific disciplines or subjects such as radiation physics, biology and medicine, external and internal dosimetry of ionizing radiation and radionuclides, decontamination and decorporation of radionuclides, physical and biological measuring techniques, assessment of radiation shielding (restricted to an extent being necessary for completion of tasks of practical radiological protection, specifically in the field of lower energies). The CD-ROM delivered with the hardcopy of the volume contains the full text of the volume and in addition information and data, which would be beyond the scope of the printed version, within the interactive programme SISy (for MS-Windows only). These refer e.g. to decay data of radionuclides or normalized excretion functions for monitoring workers by quantitative assessment of intakes of radionuclides and calculation of resulting doses.
In Corking the Nuclear Genie, Edward Esko and Alex Jack present a fresh approach to solving the problem of nuclear waste. A new and breakthrough paradigm of physics and ecology for the 21st century.
The purpose of this book is to illustrate the fundamental concepts of complexity and complex behavior and the best methods to characterize this behavior by means of their applications to some current research topics from within the fields of fusion, earth and solar plasmas. In this sense, it is a departure from the many books already available that discuss general features of complexity. The book is divided in two parts. In the first part the most important properties and features of complex systems are introduced, discussed and illustrated. The second part discusses several instances of possible complex phenomena in magnetized plasmas and some of the analysis tools that were introduced in the first part are used to characterize the dynamics in these systems. A list of problems is proposed at the end of each chapter. This book is intended for graduate and post-graduate students with a solid college background in mathematics and classical physics, who intend to work in the field of plasma physics and, in particular, plasma turbulence. It will also be of interest to senior scientists who have so far approached these systems and problems from a different perspective and want a new fresh angle.
An accessible and carefully structured introduction to Particle Physics, including important coverage of the Higgs Boson and recent progress in neutrino physics. * Fourth edition of this successful title in the Manchester Physics series * Includes information on recent key discoveries including: An account of the discovery of exotic hadrons, beyond the simple quark model; Expanded treatments of neutrino physics and CP violation in B-decays; An updated account of physics beyond the standard model , including the interaction of particle physics with cosmology * Additional problems in all chapters, with solutions to selected problems available on the book s website * Advanced material appears in optional starred sections
CR-39 plastic nuclear track detectors have proved to be one of the most useful nuclear track detectors in physics research. They have made significant contributions to research in the fields of particle radiation at aviation altitudes, in space, and in the natural environment. Other uses have included radiation risk estimation, the search for magnetic monopoles and the investigation of energetic particles generated by the low energy nuclear reactions (LENRs) in condensed matter nuclear science (CMNS). This book describes the methods and applications using CR-39 detectors in several important physics research areas and presents results obtained. |
You may like...
Maritime Challenges and Priorities in…
Joshua Ho, Sam Bateman
Hardcover
R4,935
Discovery Miles 49 350
Green Ports - Inland and Seaside…
Rickard Bergqvist, Jason Monios
Paperback
R2,527
Discovery Miles 25 270
Applications of Machine Learning and…
Ran Yan, Shuaian Wang
Hardcover
Maritime Challenges and Priorities in…
Joshua Ho, Sam Bateman
Paperback
R1,678
Discovery Miles 16 780
Lost Aboard - Tales of the Spirits on…
S Faxon, Theresa Halvorsen
Paperback
Ports, Cities, and Global Supply Chains
James Wang, Daniel Olivier, …
Hardcover
R4,648
Discovery Miles 46 480
|