![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Physics > Nuclear structure physics
this part is supported by two useful appendices on some of the mathematical tools used and the physical units of plasma physics. State-space models, state observers, H control, and process simulations are some of the familiar techniques used by ? the authors to meet the demanding spatial control specifications for these processes; however, the research reported in the monograph is more that just simulation studies and proposals for possible future hypothetical controllers, for the authors have worked with some of the world's leading existing tokamak facilities. Chapter 5, 8, and 9 respectively, give practical results of implementations of their control schemes on the FTU Tokamak (Italy), the TCV Tokamak (Switzerland), and the JET Tokamak (United Kingdom). Additionally, the authors present simulation results of their ideas for the control of the new tokamak proposed for the ITER project. In conclusion, being very aware that most control engineers will not be conversant with the complexities of tokamak nuclear fusion reactor control, the authors have taken special care to give a useful introduction to the background of nuclear fusion, the science of plasma physics and appropriate models in the first part of the monograph (Chapters 1 to 3). This introduction is followed by six chapters (4 to 9) of control studies. In Chapter 4, the generic control problem is established and then five case study chapters follow.
With their similarity to the organs of the most advanced creatures that inhabit the Earth, sensors are regarded as being the "senses of electronics": arti?cial eyes and ears that are capable of seeing and hearing beyond the range of - man perception; electronic noses and tongues that can recognise odours and ?avours without a lifetime training; touch that is able not only to feel the texture and temperature of the materials but even to discern their chemical compo- tion. Among the world of chemical sensors, optical devices (sometimes termed "optodes", from the Greek "the optical way") have reached a prominent place in those areas where the features of light and of the light-matter interaction show their advantage: contactless or long-distance interrogation, detection sensitivity, analyte selectivity, absence of electrical interference or risks, and lack of analyte consumption, to name just a few. The introduction of optical ?bres and integrated optics has added more value to such sensing since now light can be con?ned and readily carried to dif?cult-to-reach locations, higher information density can be transported, indicator dyes can be immobilised at the distal end or the evanescent ?eld for unique chemical and biochemical sensing (including multiplexed and distributed measurements), optical s- sors can now be subject to mass production and novel sensing schemes have been established (interferometric, surface plasmon resonance, ?uorescence energy transfer, supramolecular recognition . . . ).
Magnetohydrodynamics (MHD) studies the interaction between the flow of an electrically conducting fluid and magnetic fields. It involves such diverse topics as the evolution and dynamics of astrophysical objects, thermonuclear fusion, metallurgy and semiconductor crystal growth, etc. Although the first ideas in magnetohydrodynamics appeared at the beginning of the last century, the "explosion" in theoretical and experimental studies occurred in the 1950s-60s. This state-of-the-art book aims at revising the evolution of ideas in various branches of magnetohydrodynamics (astrophysics, earth and solar dynamos, plasmas, MHD turbulence and liquid metals) and reviews current trends and challenges.
Relativistic quantum electrodynamics, which describes the electromagneticinteractions of electrons and atomic nuclei, provides the basis for modeling the electronic structure of atoms, molecules and solids and of their interactions with photons and other projectiles. The theory underlying the widely used GRASP relativistic atomic structure program, the DARC electron-atom scattering code and the new BERTHA relativistic molecular structure program is presented in depth, together with computational aspects relevant to practical calculations. Along with an understanding of the physics and mathematics, the reader will gain some idea of how to use these programs to predict energy levels, ionization energies, electron affinities, transition probabilities, hyperfine effects and other properties of atoms and molecules.
Why to apply solid-state NMR? - By now, we should have learned that NMR is mainly used for the study of molecules in solution, while x-ray diffraction is the method of choice for solids. Based on this fact, the two recent 'NMR-Nobelprizes' went indeed into the liquid phase: my own one eleven years ago, and particularly the most recent one to Kurt Wuthrich. His prize is beyond any doubts very well justified. His contribution towards the study of biomolecules in solution, in their native (or almost native) environment is truly monumental. We all will profit from it indirectly when one of our future diseases will be cured with better drugs, based on the insightful knowledge gained through liquid-state NMR. Two fields of NMR are still left out of the Nobel Prize game: magnetic reso nance imaging (MRI) and solid-state NMR. The disrespect for MRI in Stockholm is particularly difficult to understand; but this is not a subject to be discussed at the present place. Solid-state NMR is the third of the three great fields of NMR, powerful already today and very promising for the near future."
This book provides a hands-on experience with atomic structure calculations. Material covered includes angular momentum methods, the central field Schrodinger and Dirac equations, Hartree-Fock and Dirac-Hartree-Fock equations, multiplet structure, hyperfine structure, the isotope shift, dipole and multipole transitions, basic many-body perturbation theory, configuration interaction, and correlation corrections to matrix elements. The book also contains numerical methods for solving the Schrodinger and Dirac eigenvalue problems and the (Dirac)-Hartree-Fock equations. "
Over the last forty years, plasma supported processes have attracted ever - creasing interest, and now, all modern semiconductor devices undergo at least one plasma-involved processing step, starting from surface cleaning via coating to etching. In total, the range of the treated substrates covers some orders of magnitude: Trenches and linewidths of commercially available devices have - ready passed the boundary of 100 nm, decorative surface treatment will happen 2 in the mm range, and the upper limit is reached with surface protecting layers of windows which are coated with ?/4 layers against IR radiation. The rapid development of the semiconductor industry is inconceivable wi- outthegiantprogressintheplasmatechnology.Moore'slawisnotcarvedinto 1 stone, and not only the ITRS map is subject to change every ?ve years but also new branches develop and others mingle together. Moreover, the quality of conventional materials can be improved by plasma treatment: Cottonbecomesmorecrease-resistant, leathermoredurable, andthe shrinking of wool ?bers during the washing process can be signi?cantly reduced. To cut a long story short: More than 150 years after the discovery of the sputtering e?ect by Grove, plasma-based processes are about to spread out into new ?elds of research and application 1]-no wonder that the market for etching machines kept growing by an annual rate of 17 % up to the burst of the internet bubble, and it took only some years of recovery to continue the voyage 2].
Covers all the phenomenological and experimental data on nuclear physics and demonstrates the latest experimental developments that can be obtained. Introduces modern theories of fundamental processes, in particular the electroweak standard model, without using the sophisticated underlying quantum field theoretical tools. Incorporates all major present applications of nuclear physics at a level that is both understandable by a majority of physicists and scientists of many other fields, and usefull as a first introduction for students who intend to pursue in the domain.
Space-Time, Relativity, and Cosmology provides a historical introduction to modern relativistic cosmology and traces its historical roots and evolution from antiquity to Einstein. The topics are presented in a non-mathematical manner, with the emphasis on the ideas that underlie each theory rather than their detailed quantitative consequences. A significant part of the book focuses on the Special and General theories of relativity. The tests and experimental evidence supporting the theories are explained together with their predictions and their confirmation. Other topics include a discussion of modern relativistic cosmology, the consequences of Hubble's observations leading to the Big Bang hypothesis, and an overview of the most exciting research topics in relativistic cosmology. This textbook is intended for introductory undergraduate courses on the foundations of modern physics. It is also accessible to advanced high school students, as well as non-science majors who are concerned with science issues.
In diesem Buch werden die Risiken von Kernkraftwerken und der verantwortungsbewusste Umgang damit zur Vermeidung von Stoerfallen mit Aussenwirkung in einer fur den Laien verstandlichen Form erklart. Dazu werden die Grundlagen der Kernkraftwerkstechnologie und die Sicherheitsmassnahmen erlautert, auch mit Blick auf in der Vergangenheit eingetretene Stoerfalle. Nach kurzer Darstellung der in der Welt betriebenen Kernkraftwerke und der zugehoerigen Brennstoff-Kreislauf-Anlagen werden die in den nachsten Jahren in Deutschland verbleibenden Druck- und Siedewasser-Reaktoren sowie die neu entwickelten Reaktoren - der Europaische Druckwasser-Reaktor (EPR) und der neu entwickelte Siedewasserreaktor SWR-1000 (KERENA) - beschrieben. Danach werden das reaktorphysikalische und das sicherheitstechnische Gesamtkonzept dieser Reaktoren und die in einem Genehmigungsverfahren zu erstellenden Analysen fur die Auslegungsstoerfalle dargestellt. Nach kurzer Diskussion der Ergebnisse von probabilistischen Analysen und der Ergebnisse von fruheren Risikostudien werden neuere sicherheitstechnische Forschungsergebnisse vorgestellt, die in den letzten 20 Jahren zum Thema Kernschmelz-Unfalle und deren sicherheitstechnischer Beherrschung in Europa und vor allem im fruheren Kernforschungszentrum und der Universitat Karlsruhe erzielt wurden. Diese Forschungsergebnisse haben Auswirkungen auf die Sicherheit bestehender Druck- und Siedewasserreaktoren in Deutschland. Sie sind aber vor allem in das Sicherheitskonzept der neuen europaischen Druck- und Siedewasserreaktoren (EPR und KERENA) eingeflossen. Das Buch wendet sich an Ingenieure im Bereich Kerntechnik, aber auch an interessierte Laien.
This is the proceedings of the Ninth International Symposium on Exotic Nuclei EXON-2018, 10-15 September, Petrozavodsk, Russia. The first symposium took place 27 years ago in 1991 in Foros (Crimea), the later symposiums were held on Baikal Lake, in Peterhof, Khanty-Mansiysk, Sochi, Vladivostok, Kaliningrad and Kazan. The organizers of the Symposium were the five largest scientific centers of heavy-ion physics - JINR (Dubna), the RIKEN Research Center (Japan), the GANIL National Center (France), the GSI Helmholtz Centre for Heavy Ion Research (Germany), the National Superconducting Cyclotron Laboratory (Michigan, USA). The main topics are: properties of light exotic nuclei, synthesis and properties of superheavy elements, rare processes and decays, experimental facilities and future projects.
This book provides an introduction to Quantum Chromodynamics (QCD), the theory of strong interactions. It covers in full detail both the theoretical foundations and the experimental tests of the theory. Although the experimental chapters focus on recent measurements, the subject is placed into historical perspective by also summarizing the steps which lead to the formulation of QCD. Measurements are discussed as they were performing by the LEP experiments at CERN, or at hadron-hadron and lepton-hadron colliders such as the TEVATRON at Fermilab and HERN at DESY. Emphasis is placed on high energy tests of QCD, such as measurements of the strong coupling constant, investigations of the non-abelian structure of the underlying gauge group, determinations of nucleon structure functions, and studies of the non-perturbative hadronization process. This excellent text gives a detailed overview of how QCD developed in the 20th century and where we stand with respect to a quantitative understanding after the turn of the millenium. The text is intended for graduate and postgraduate students as well as researchers, and includes numerous problems and solutions.
On September 27 - October 3, 2008 the NATO Advanced Research Workshop (ARW) on progress in high-energy physics and nuclear safety was held in Yalta, Crimea (see: http: //crimea.bitp.kiev.ua and http: //arw.bitp.kiev.ua). Nearly 50 leading experts in high-energy and nuclear physics from Eastern and Western Europe as well as from North America participated at the Workshop. The topics of the ARW covered recent results of theoretical and experimental studies in high-energy physics, accelerator, detection and nuclear technologies, as well as problems of nuclear safety in high-energy experimentation and in nuclear - dustry. The forthcoming experiments at the Large Hadron Collider (LHC) at CERN and cosmic-ray experiments were among the topics of the ARW. An important aspect of the Workshop was the scienti?c collaboration between nuclear physicists from East and West, especially in the ?eld of nuclear safety. The present book contains a selection of invited talks presented at the ARW. The papers are grouped in two part
This book is based upon a part of the invited and contributing talks at the 25th International Symposium on Ion-Atom Collisions, ISIAC (biennial), held on July 23-25, 2017 in Palm Cove, Queensland, Australia. To aid the general reader, all the authors tried to present their chapters in the context of the development of the addressed particular themes and the underlying major ideas and intricacies. Some chapters contain new results that have not been previously published elsewhere. Whenever possible, the authors made their attempts to connect the basic research in atomic and molecular collision physics with some important applications in other branches of physics as well as across the physics borders. It is hoped that the material presented in this book will be interesting and useful to the beginners and specialists alike. The contents and expositions are deemed to be helpful to the beginners in assessing the potential overlap of some of the presented material with their own research themes and this might provide motivations for possible further upgrades. Likewise, specialists could take advantage of these reviews to see where the addressed themes were and where they are going, in order to acknowledge the fruits of the efforts made thus far and actively contribute to tailoring the directions of future research. Overall, this book is truly interdisciplinary. It judiciously combines experiments and theories within particle collision physics on atomic and molecular levels. It presents state-of-the-art fundamental research in this field. It addresses the possibilities for significant and versatile applications outside standard atomic and molecular collision physics ranging from astrophysics, surface as well as cluster physics/chemistry, hadron therapy in medicine and to the chemical industry. It is then, as Volume 2, fully in the spirit of the 'Aims and Scope' of this book series by reference to its 'Mission Statement'.
This volume presents the Proceedings of New Development in Optics and Related Fields, held in Erice, Sicily, Italy, from the 6th to the 21st of June, 2005. This meeting was organized by the International School of Atomic and Molecular Spectroscopy of the Ettore Majorana Center for Scientific Culture. The purpose of this Institute was to provide a comprehensive and coherent treatment of the new techniques and contemporary developments in optics and related fields. Several lectures of the course addressed directly the technologies required for the detection and identification of chemical and biological threats; other lectures considered the possible applications of new techniques and materials to the detection and identification of such threats. Each lecturer developed a coherent section of the program starting at a somewhat fundamental level and ultimately reaching the frontier of knowledge in the field in a systematic and didactic fashion.
Recent results on the nature of low-, intermediate- and high-energy nuclear forces as well as on the internal structure of nucleons and atomic nuclei are presented. Prospects to find a new state of the nuclear matter at extreme conditions that existed in the early Universe and the utilisation of the nuclear energy are discussed.
Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.
Quantum Mechanics: Classical Results, Modern Systems, and Visualized Examples is a comprehensive introduction to non-relativistic quantum mechanics for advanced undergraduate students in physics and related fields. It provides students with a strong conceptual background in the most important theoretical aspects of quantum mechanics, extensive experience with the mathematical tools required to solve problems, the opportunity to use quantum ideas to confront modern experimental realizations of quantum systems, and numerous visualizations of quantum concepts and phenomena. Changes from the First Edition include many new discussions of modern quantum systems (such as Bose-Einstein condensates, the quantum Hall effect, and wave packet revivals) all in the context of familiar textbook level examples. The book continues to emphasize the many connections to classical mechanics and wave physics to help students use their existing intuition to better learn new quantum concepts.
Section I: High Tc Superconductivity.- Flux Phases in the t-J Model.- Two Dimensional Phenomena in High Tc Superconductors.- Novel Singular Solutions of BCS Theory.- Magnetism and Superconductivity in Doped Lamellar Copper Oxide Systems.- A Vortex Lattice of Anyons in Strongly Correlated Systems.- Electron-Hole Liquid Model for High Tc Superconductivity.- Strong Electron Correlations in CuO2 Planes of High Temperature Superconductors.- Two Component Superconductivity.- Section II: Localization.- Coherent Back Scattering and Other Optical Effects in Random Media.- Many Body Techniques for Wave Propagating in Random Media.- Localization and Folding of Random Chains.- Section III: Nuclear Physics.- A New Theory of Collisions.- Calculations of the Ground State of 16O.- A New State of Nuclear Matter.- The "Ideal" Shell Model Calculation.- Non-Spurious Harmonic Oscillator States for Many-Body Systems.- Section IV: Microscopic Approaches I.- Inhomogeneous Quantum Liquids: Many Body Theory on the Testbench.- Coupled Cluster Parametrizations of Model Field Theories and their Bargman-Space Representations.- Fermion Monte Carlo Algorithms for Quantum Fluids.- Bose Condensate in Superfluid 4He and Momentum Distributions by Deep Inelastic Scattering.- Section V: Mesoscopic Systems.- Ballistic Electronic Transport in Semiconductor Structures.- Random-Matrix-Model for Fluctuations in Microscopic and Mesoscopic Systems.- Section VI: Strongly Correlated Systems.- Super-Effective-Field CAM Theory of Strongly Correlated Electron and Spin Systems.- Unified Description of Strongly and Weakly Correlated Electrons.- Fermi Hyper-Netted Chain Theory on a Lattice: The Hubbard Model.- Many Body Methods Applied to Scattering of Composite Particles in Gauge Theory with Confinement.- Section VII Microscopic Approaches Ii.- Two-Body Density Matrix for Quantum Fluids.- New Microscopic Description of Liquid 3He.- Excitation Spectrum of a 3He Impurity in 4He.- Section VIII: Feenberg Medal Presentation And Summary.- Achievements in Quantum Monte Carlo.- Summary of The VI International Conference on Recent Progress in Many Body Theories Arad Israel.
Solid-State Physics, Superconductivity: Electronic Structure of Highly Correlated Systems; L.M. Falicov, J.K. Freericks. Quantum Fluids: Unusual One-Electron States on the Surface of Liquid Helium; E. Baskin. Nuclear Physics: Nucleonic Superfluid; J.W. Clark, et al. Atoms and Molecules: Fock-Space Coupled Cluster Method; S.R. Hughes, U. Kaldor. Classical Fluids, Polymers, Plasmas: Fluids of Hard Convex Molecules; M.S. Wertheim. Lattice Theories, Phase Transitions: Line Tension at Wetting and Prewetting Transitions; B. Widom. Cellular Automata: Cellular Automata and Spread of Damage; C. Tsallis. Fundamental Quantum Mechanics: Hannay Angle in Classical Mechanics and its Gauge-Invariant Generalization; D. Kobe. 51 additional articles. Index.
In Volume 1, A Monte Carlo Primer - A Practical Approach to Radiation Transport (the "Primer"), we attempt to provide a simple, convenient, and step-by-step approach to the development, basic understanding, and use of Monte Carlo methods in radiation transport. Using the PC, the Primer begins by developing basic Monte Carlo codes to solve simple transport problems, then introduces a teaching tool, the Probabilistic Framework Code (PFC), as a standard platform for assembling, testing, and executing the various Monte Carlo techniques that are presented. This second volume attempts to continue this approach by using both custom Monte Carlo codes and PFC to apply the concepts explained in the Primer to obtain solutions to the exercises given at the end of each chapter in the Primer. A relatively modest number of exercises is included in the Primer. Some ambiguity is left in the statement of many of the exercises because the intent is not to have the user write a particular, uniquely correct piece of coding that produces a specific number as a result, but rather to encourage the user to think about the problems and develop further the concepts explained in the text. Because in most cases there is more than one way to solve a Monte Carlo transport problem, we believe that working with the concepts illustrated by the exercises is more important than obtaining anyone particular solution.
A comprehensive survey of the most recent results from the field of quark-gluon structure of the nucleon, in particular how the spin of the nucleon is shared by its constituents. After very intriguing results from CERN and SLAC at the end of the 1980s, the last decade has seen a set of second-generation experiments at high energy accelerators that have yielded precise information on the solution of the 'Spin Crisis' - as well as opening up new questions. The articles are written by experts from the leading collaboration and theory groups as well as providing an expert summary of the state of the art, the book points the way to future research directions. Its main focus is on semi-inclusive and exclusive measurements of deep inelastic lepton scattering, which enables for the first time the determination of the flavor-separated quark spin distributions. Future developments on generalized parton distributions and their interpretation as well as the transverse spin structure are also covered. An indispensable volume for all working in hadronic physics.
In this history of extinction and existential risk, a Newsweek and Bloomberg popular science and investigative journalist examines our most dangerous mistakes -- and explores how we can protect and future-proof our civilization. End Times is a compelling work of skilled reportage that peels back the layers of complexity around the unthinkable -- and inevitable -- end of humankind. From asteroids and artificial intelligence to volcanic supereruption to nuclear war, veteran science reporter and TIME editor Bryan Walsh provides a stunning panoramic view of the most catastrophic threats to the human race. In End Times, Walsh examines threats that emerge from nature and those of our own making: asteroids, supervolcanoes, nuclear war, climate change, disease pandemics, biotechnology, artificial intelligence, and extraterrestrial intelligence. Walsh details the true probability of these world-ending catastrophes, the impact on our lives were they to happen, and the best strategies for saving ourselves, all pulled from his rigorous and deeply thoughtful reporting and research. Walsh goes into the room with the men and women whose job it is to imagine the unimaginable. He includes interviews with those on the front lines of prevention, actively working to head off existential threats in biotechnology labs and government hubs. Guided by Walsh's evocative, page-turning prose, we follow scientific stars like the asteroid hunters at NASA and the disease detectives on the trail of the next killer virus. Walsh explores the danger of apocalypse in all forms. In the end, it will be the depth of our knowledge, the height of our imagination, and our sheer will to survive that will decide the future.
This introduction to nuclear physics provides an excellent basis for a core undergraduate course in this area. The authors show how simple models can provide an understanding of the properties of nuclei, both in their ground and excited states, and of the nature of nuclear reactions. They include chapters on nuclear fission, its application in nuclear power reactors, the role of nuclear physics in energy production and nucleosynthesis in stars. This new edition contains several additional topics: muon-catalyzed fusion, the nuclear and neutrino physics of supernovae, neutrino mass and neutrino oscillations, and the biological effects of radiation. A knowledge of basic quantum mechanics and special relativity is assumed. Each chapter ends with a set of problems accompanied by outline solutions. |
You may like...
Seawater Intrusion in Coastal Aquifers…
Jacob Bear, A. Cheng, …
Hardcover
R1,705
Discovery Miles 17 050
Discourse and Pragmatic Markers from…
Chiara Ghezzi, Piera Molinelli
Hardcover
R3,610
Discovery Miles 36 100
Spying And The Crown - The Secret…
Richard J. Aldrich, Rory Cormac
Paperback
R358
Discovery Miles 3 580
|