Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Physics > Particle & high-energy physics
This work provides a unique introduction to the theory of complex angular momenta, based on the methods of field theory. It comprises an English translation of a lecture course given by Vladimir Gribov in 1969. Besides their historical significance, these lectures contain material highly relevant to research today and likely to form the basis for future developments in the subject.
One of the triumphs of modern particle physics has been the extent to which Quantum Chromodynamics (QCD) has successfully accounted for the strong interaction processes observed at high-energy particle colliders, for example the production of heavy quarks and jets of particles, and the short-distance parton structure of the proton. This book gives a detailed overview of collider physics with special emphasis on the study of QCD. After a general description of the QCD Lagrangian, and the properties of asymptotic freedom and colour confinement which derive from it, the most important applications at high-energy colliders are described in detail. These include the production of jets, heavy quarks, electroweak gauge bosons and Higgs bosons. The various methods of measuring the strong coupling constant are summarised. Many of the theoretical results are calculated from first principles, and the book will be both a textbook and a valuable source of reference material for all particle physicists.
This volume describes applications of muons in science and engineering. Research using muons relies on their basic properties and their microscopic interactions with surrounding particles. Examples of muon research include muon catalysis for nuclear fusion; the application of muon spin probes to study microscopic magnetic properties of materials; electron labeling to help in the understanding of electron transfer in proteins; and non-destructive element analysis of the human body. Cosmic ray muons can also be used to study the inner structure of volcanoes.
This book collects the Proceedings of the Workshop Incontri di Fisica delle Alte Energie (IFAE) 2007, Napoli, 11-13 April 2007." This is the sixth edition of a series of meetings on fundamental research in particle physics and was attended by about 160 researchers. Presentations, both theoretical and experimental, addressed the status of Physics of the Standard Model and beyond, Flavour phyisc, Neutrino and Astroparticle physics, new technology in high energy physics. Special emphasis was given to the expectations of the forthcoming Large Hadron Collider, due in operation at the end of 2007. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field. The venue of plenary sessions interleaved with parallel ones allowed for a rich exchange of ideas, presented in these Proceedings, that form a coherent picture of the findings and of the open questions in this extremely challenging cultural field.
This volume gives an account of modern knowledge of Regge Theory and QCD, an active area of high-energy particle-physics research. It records what has been learned in the past, what is relevant now, and what is essential for the future. The authors cover forty years of research and provide unique insight into the theory and its phenomenological development. The phenomenology is applied to a variety of reactions and is compared extensively with experiment. This is essential reading for particle physicists and is suitable as a graduate textbook.
In recent years, the old idea that gauge theories and string
theories are equivalent has been implemented and developed in
various ways, and there are by now various models where the string
theory / gauge theory correspondence is at work. One of the most
important examples of this correspondence relates Chern-Simons
theory, a topological gauge theory in three dimensions which
describes knot and three-manifold invariants, to topological string
theory, which is deeply related to Gromov-Witten invariants. This
has led to some surprising relations between three-manifold
geometry and enumerative geometry. This book gives the first
coherent presentation of this and other related topics. After an
introduction to matrix models and Chern-Simons theory, the book
describes in detail the topological string theories that correspond
to these gauge theories and develops the mathematical implications
of this duality for the enumerative geometry of Calabi-Yau
manifolds and knot theory. It is written in a pedagogical style and
will be useful reading for graduate students and researchers in
both mathematics and physics willing to learn about these
developments.
Drawing on the author 's forty-plus years of experience as a researcher in the interaction of charged particles with matter, this book emphasizes the theoretical description of fundamental phenomena. Special attention is given to classic topics such as Rutherford scattering; the theory of particle stopping; the statistical description of energy loss and multiple scattering and numerous more recent developments.
Certain interactions, such as nuclear forces and the forces of ‘high-energy’ physics, which arise in the theory of elementary particles, cannot be described successfully by quantum field theory. Considerable interest has therefore centred on attempts to formulate interactions between elementary particles in terms of the S-Matrix, an operator introduced by Heisenberg which connects the input and output of a scattering experiment without seeking to give a localized description of the intervening events. In this book four authors, who are together responsible for many of these developments, set out a theory of the S-Matrix starting, as far as possible, from physically plausible assumptions and investigate the mathematical consequences. The least understood of these assumptions is the vital postulate of analyticity; much insight can however be gained into its working by a study of the Feyman integrals and the book describes what is known about their analytic and high energy properties. Originally published in hardback in 1966.
This book lays out a vision for a coherent framework for understanding complex systems. By developing the genuine idea of Brownian agents, the author combines concepts from informatics, such as multiagent systems, with approaches of statistical many-particle physics. It demonstrates that Brownian agent models can be successfully applied in many different contexts, ranging from physicochemical pattern formation to swarming in biological systems.
Starting from basic principles, this book describes the rapidly growing field of modern semiconductor detectors used for energy and position measurement radiation. The author, whose own contributions to these developments have been significant, explains the working principles of semiconductor radiation detectors in an intuitive way. Broad coverage is also given to electronic signal readout and to the subject of radiation damage.
The first book of its kind to highlight the unique capabilities of laser-driven acceleration and its diverse potential, Applications of Laser-Driven Particle Acceleration presents the basic understanding of acceleration concepts and envisioned prospects for selected applications. As the main focus, this new book explores exciting and diverse application possibilities, with emphasis on those uniquely enabled by the laser driver that can also be meaningful and realistic for potential users. It also emphasises distinction, in the accelerator context, between laser-driven accelerated particle sources and the integrated laser-driven particle accelerator system (all-optical and hybrid versions). A key aim of the book is to inform multiple, interdisciplinary research communities of the new possibilities available and to inspire them to engage with laser-driven acceleration, further motivating and advancing this developing field. Material is presented in a thorough yet accessible manner, making it a valuable reference text for general scientific and engineering researchers who are not necessarily subject matter experts. Applications of Laser-Driven Particle Acceleration is edited by Professors Paul R. Bolton, Katia Parodi, and Joerg Schreiber from the Department of Medical Physics at the Ludwig-Maximilians-Universitat Munchen in Munchen, Germany. Features: Reviews the current understanding and state-of-the-art capabilities of laser-driven particle acceleration and associated energetic photon and neutron generation Presents the intrinsically unique features of laser-driven acceleration and particle bunch yields Edited by internationally renowned researchers, with chapter contributions from global experts
This book collects the Proceedings of the Workshop "Incontri di Fisica delle Alte Energie (IFAE) 2006, Pavia, 19-21 Aprile 2006." The workshop is the fifth edition of a series of workshops on fundamental research in particle physics, as carried on at the most important international laboratories, and possible fallouts in medical and technological applications. Researches in this field aim at identifying the most elementary constituents of matter.
This book provides systematic coverage of the beam-based techniques that accelerator physicists use to improve the performance of large particle accelerators, including synchrotrons and linacs. It begins by discussing the basic principles of accelerators, before exploring the various error sources in accelerators and their impact on the machine's performances. The book then demonstrates the latest developments of beam-based correction techniques that can be used to address such errors and covers the new and expanding area of beam-based optimization. This book is an ideal, accessible reference book for physicists working on accelerator design and operation, and for postgraduate studying accelerator physics. Features: Entirely self-contained, exploring the theoretic background, including algorithm descriptions, and providing application guidance Accompanied by source codes of the main algorithms and sample codes online Uses real-life accelerator problems to illustrate principles, enabling readers to apply techniques to their own problems Xiaobiao Huang is an accelerator physicist at the SLAC National Accelerator Laboratory at Stanford University, USA. He graduated from Tsinghua University with a Bachelor of Science in Physics and a Bachelor of Engineering in Computer Science in 1999. He earned a PhD in Accelerator Physics from Indiana University, Bloomington, Indiana, USA, in 2005. He spent three years on thesis research work at Fermi National Accelerator Laboratory from 2003-2005. He has worked at SLAC as a staff scientist since 2006. He became Accelerator Physics Group Leader of the SPEAR3 Division, Accelerator Directorate in 2015. His research work in accelerator physics ranges from beam dynamics, accelerator design, and accelerator modelling and simulation to beam based measurements, accelerator control, and accelerator optimization. He has taught several courses at US Particle Accelerator School (USPAS), including Beam Based Diagnostics, Accelerator Physics, Advanced Accelerator Physics, and Special Topics in Accelerator Physics.
This book is a comprehensive and coherent introduction to the role of cosmic strings and other topological defects in the universe. After an introduction to standard cosmological theory and the theory of phase transitions in the early universe, the book then describes, in turn, the properties, formation, and cosmological implications of cosmic strings, monopoles, domain walls and textures. It concludes with a chapter considering the role of topological defects in inflationary universe models. Ample introductory material is included to make the book readily accessible. It will be of interest to graduate students and researchers in particle physics, astrophysics and cosmology.
Applications of quantum field theoretical methods to gravitational physics, both in the semiclassical and the full quantum frameworks, require a careful formulation of the fundamental basis of quantum theory, with special attention to such important issues as renormalization, quantum theory of gauge theories, and especially effective action formalism. The first part of this graduate textbook provides both a conceptual and technical introduction to the theory of quantum fields. The presentation is consistent, starting from elements of group theory, classical fields, and moving on to the effective action formalism in general gauge theories. Compared to other existing books, the general formalism of renormalization in described in more detail, and special attention paid to gauge theories. This part can serve as a textbook for a one-semester introductory course in quantum field theory. In the second part, we discuss basic aspects of quantum field theory in curved space, and perturbative quantum gravity. More than half of Part II is written with a full exposition of details, and includes elaborated examples of simplest calculations. All chapters include exercises ranging from very simple ones to those requiring small original investigations. The selection of material of the second part is done using the "must-know" principle. This means we included detailed expositions of relatively simple techniques and calculations, expecting that the interested reader will be able to learn more advanced issues independently after working through the basic material, and completing the exercises.
This text introduces the theoretical framework for describing the quark-gluon plasma, an important new state of matter. The first part of the book is a self-contained introduction to relativistic thermal field theory. Topics include the path integral approach, the real and imaginary time formalisms, fermion fields and gauge fields at finite temperature. The author illustrates useful techniques such as the evaluation of frequency sums and the use of cutting rules. The second part of the book is devoted to recent developments, and gives a detailed account of collective excitations (bosonic and fermionic), showing how they give rise to energy scales that imply a reorganization of perturbation theory. The author also explains the relation with kinetic theory. He works out in detail applications to processes that occur in heavy ion collisions and in astrophysics. Each chapter ends with exercises and a guide to the literature. Graduate students and researchers in nuclear, particle, and astrophysics will benefit from this book.
This book is a guide to the practical application of statistics in data analysis as typically encountered in the physical sciences. It is primarily addressed at students and professionals who need to draw quantitative conclusions from experimental data. Although most of the examples are taken from particle physics, the material is presented in a sufficiently general way as to be useful to people from most branches of the physical sciences. The first part of the book describes the basic tools of data analysis: concepts of probability and random variables, Monte Carlo techniques, statistical tests, and methods of parameter estimation. The last three chapters are somewhat more specialized than those preceding, covering interval estimation, characteristic functions, and the problem of correcting distributions for the effects of measurement errors (unfolding).
"Neutrinos and Explosive Events in the Universe" brought together experts from diverse disciplines to offer a detailed view of the exciting new work in this part of High Energy Astrophysics. Sponsored by NATO as an Advanced Study Institute, and coordinated under the auspices of the International School of Cosmic Ray Astrophysics (14th biennial course), the ASI featured a full program of lectures and discussion in the ambiance of the Ettore Majorana Centre in Erice, Italy, including visits to the local Dirac and Chalonge museum collections as well as a view of the cultural heritage of southern Sicily. Enri- ment presentations on results from the Spitzer Infrared Space Telescope and the Origin of Complexity complemented the program. This course was the best attended in the almost 30 year history of the School with 121 participants from 22 countries. The program provided a rich ex- rience, both introductory and advanced, to fascinating areas of observational Astrophysics Neutrino Astronomy, High Energy Gamma Ray Astronomy, P- ticle Astrophysics and the objects most likely responsible for the signals - plosions and related phenomena, ranging from Supernovae to Black Holes to the Big Bang. Contained in this NATO Science Series volume is a summative formulation of the physics and astrophysics of this newly emerging research area that already has been, and will continue to be, an important contributor to understanding our high energy universe.
The development of the supersymmetry technique has led to significant advances in the study of disordered metals and semiconductors. Proven of great use in the analysis of modern mesoscopic quantum devices, the technique has also found applications in other areas, such as localization and quantum chaos. This volume provides comprehensive treatment of the ideas and uses of supersymmetry. The first four chapters set out the basic results and some straightforward applications of the technique. Thereafter, Professor Efetov covers a range of topics in detail, including random matrix theory, persistent currents in mesoscopic rings, transport in mesoscopic devices, localization in quantum wires and films, and the quantum Hall effect. Special features include problems and solutions drawn from mesoscopics, localization, and quantum chaos, and extended introductions that make each chapter self-contained. The text will be of great interest to graduate students and researchers in condensed matter, statistical, and mathematical physics and in quantum chaos.
Laser cooling allows one to slow atoms to roughly the speed of a mosquito and to control their motions with unprecedented precision. This elegant technique, whereby atoms, molecules, and even microscopic beads of glass, can be trapped in small regions of free space by beams of light and subsequently moved at will using other beams, has revolutionized many areas of physics. In particular, it provides a useful research tool for the study of individual atoms, for investigating the details of chemical reactions, and even for the study of atomic motion in the quantum domain. This text begins with a review of the relevant aspects of quantum mechanics; it then turns to the electromagnetic interactions involved in slowing and trapping atoms, in both magnetic and optical traps. The concluding chapters discuss a broad range of applications, including atomic clocks, studies of ultra-cold collision processes, diffraction and interference of atomic beams, optical lattices, and Bose-Einstein condensation. The book is intended for advanced undergraduates and beginning graduate students who have some basic knowledge of optics and quantum mechanics. An extensive bibliography provides access to the current research literature.
This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.
This textbook provides a clear, concise and comprehensive review of the physical principles behind the devices used to detect charged particles and gamma rays, and the construction and performance of these many different types of detectors. Detectors for high-energy particles and radiation are used in many areas of science, especially particle physics and nuclear physics experiments, nuclear medicine, cosmic ray measurements, space sciences and geological exploration. This second edition includes all the latest developments in detector technology, including several new chapters covering micro-strip gas chambers, silicion strip detectors and CCDs, scintillating fibers, shower detectors using noble liquid gases, and compensating calorimeters for hadronic showers. This well-illustrated textbook contains examples from the many areas in science in which these detectors are used. It provides both a coursebook for students in physics, and a useful introduction for researchers in other fields.
The 17 chapters of this book grew out of the tutorial lectures given by leading world-class experts at the NATO Advanced Research Workshop "Effects of Space Weather on Technology Infrastructure" - ESPRIT, which was held in Rhodes on March 25-29, 2004. All manuscripts were refereed and subsequently meticulously edited by the editor to ensure the highest quality for this monograph. I owe particular thanks to the lecturers of the ESPRIT Advanced Research Workshop for producing these excellent tutorial reviews, which convey the essential knowledge and the latest advances in our field. Due to the breadth, extensive literature citations and quality of the reviews we expect this publication to serve extremely well as a reference book. Multimedia material referring to individual chapters of the book is accessible on the accompanying CD. The aim of ESPRIT was to assess existing knowledge and identify future actions regarding monitoring, forecasting and mitigation of space weather induced malfunction and damage of vital technological systems operating in space and on the ground.
Editors Laurie Brown, Max Dresden, Lillian Hoddeson and Michael Riordan have brought together a distinguished group of elementary particle physicists and historians of science to explore the recent history of particle physics. Based on a conference held at Stanford University, this is the third volume of a series recounting the history of particle physics and offers the most up-to-date account of the rise of the Standard Model, which explains the microstructure of the world in terms of quarks and leptons and their interactions. Major contributors include Steven Weinberg, Murray Gell-Mann, Michael Redhead, Silvan Schweber, Leon Lederman and John Heilbron. The wide-ranging articles explore the detailed scientific experiments, the institutional settings in which they took place, and the ways in which the many details of the puzzle fit together to account for the Standard Model.
Quantum field theory describes basic physical phenomena over an extremely wide range of length or energy scales. Quantum fields exist in space and time, which can be approximated by a set of lattice points. This book presents a comprehensive and coherent account of the theory of quantum fields on a lattice, an essential technique for the study of the strong and electroweak nuclear interactions. After introductory chapters on scalar fields, gauge fields and fermion fields, the book studies quarks and gluons in QCD and fermions and bosons in the electroweak theory. The last chapter is devoted to numerical simulations algorithms that have been used in recent large-scale numerical simulations. The book will be valuable for graduate students and researchers in theoretical physics, elementary particle physics, and field theory, as well as non-perturbative approximations and numerical simulations of quantum field phenomena. |
You may like...
Electroweak Symmetry And Its Breaking
Regina Demina, Aran Garcia-bellido
Hardcover
R2,261
Discovery Miles 22 610
Low-Energy Nuclear Reactions and New…
Jan Marwan, Steven Krivit
Hardcover
R5,773
Discovery Miles 57 730
Particles, Fields And Topology…
T R Govindarajan, Giuseppe Marmo, …
Hardcover
R2,981
Discovery Miles 29 810
Handbook Of Accelerator Physics And…
Alexander Wu Chao, Maury Tigner, …
Hardcover
R4,793
Discovery Miles 47 930
|