Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant pathology & diseases
PGPR have gained world wide importance and acceptance for agricultural benefits. These microorganisms are the potential tools for sustainable agriculture and the trend for the future. Scientific researches involve multidisciplinary approaches to understand adaptation of PGPR to the rhizosphere, mechanisms of root colonization, effects on plant physiology and growth, biofertilization, induced systemic resistance, biocontrol of plant pathogens, production of determinants etc. Biodiversity of PGPR and mechanisms of action for the different groups: diazotrophs, bacilli, pseudomonads, and rhizobia are shown. Effects of physical, chemical and biological factors on root colonization and the proteomics perspective on biocontrol and plant defence mechanism is discussed. Visualization of interactions of pathogens and biocontrol agents on plant roots using autofluorescent protein markers has provided more understanding of biocontrol process. Commercial formulations and field applications of PGPR are detailed.
Advances in Rice Blast Research provides a complete overview of the research undertaken on the rice-blast pathosystem. This book gathers in one volume the most recent works on rice blast fungus genetics and molecular biology of pathogenicity, rice blast fungus population studies, and genetics and molecular biology of rice resistance to blast, including resistance gene cloning. It also presents the latest results on resistance breeding and resistance management strategies, epidemiology and disease management. This book is a must for plant pathologists and breeders working on rice blast and also to plant pathologists and breeders dealing with fungal diseases in general, because the rice-blast pathosystem is a model in plant pathology. Advances in Rice Blast Research provides a complete overview of the research undertaken on the rice-blast pathosystem. This book gathers in one volume the most recent works on rice blast fungus genetics and molecular biology of pathogenicity, rice blast fungus population studies, and genetics and molecular biology of rice resistance to blast, including resistance gene cloning. It also presents the latest results on resistance breeding and resistance management strategies, epidemiology and disease management. This book is a must for plant pathologists and breeders working on rice blast and also to plant pathologists and breeders dealing with fungal diseases in general, because the rice-blast pathosystem is a model in plant pathology.
Studies on the phenomenon of plant pathogenesis (disease development) have been useful to have a deep insight into the interactions between host plant and the pathogen. Depending on the levels of susceptibility (compatibility) or resistance (incompatibility) of the host plant and virulence of the pathogen, disease development may progress, either leading to symptom expression or result in the suppression of pathogen proliferation. Molecular techniques have been applied to elucidate the nature of interactions between the gene products of the plant and pathogen at cellular and molecular levels. Successful evasion of host's surveillance system and subsequent activities of metabolites of the pathogen (enzymes and toxins) encoded by pathogen genes counteracting the effects of various defense-related antimicrobial compounds present already or produced by the host plants, after initiation of infection have been critically studied by applying various molecular techniques. In addition to studying various phases of disease development in individual plants, molecular methods have been demonstrated to be effective, in gathering data on various aspects of epidemiology under natural conditions where the interaction of pathogen with populations of plants is influenced significantly by the environmental conditions existing in different ecosystems. This volume focuses on the possibility of applying the knowledge on pathogenesis and molecular epidemiology to determine the vulnerable stages in the life cycles of the pathogens that can be disrupted to achieve more effective disease control.
This book is based mainly on invited and offered papers presented at the Second International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures held at University College, Cork, Ireland in September 1996, with additional invited papers. The First International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures was held at the same venue in 1987 and was published as Acta Horticulturae volume 225, 1988. In the intervening years there have been considerable advances in both plant disease diagnostics and in the development of structured approaches to the management of disease and microbial contamination in micropropagation. These approaches have centred on attempts to separate, spatially, the problems of disease transmission and laboratory contamination. Disease-control is best achieved by establishing pathogen-free cultures while laboratory contamination is based on subsequent good working practice. Control of losses due to pathogens and microbial contamination in vitro addresses, arguably, the most importance causes of losses in the industry; nevertheless, losses at and post establishment can also be considerable due to poor quality microplants or micro-shoots. In this symposium, a holistic approach to pathogen and microbial contamination control is evident with the recognition that micropropagators must address pathogen and microbial contamination in vitro, and diseases and microplant failure at establishment. There is increasing interest in establishing beneficial bacterial and mycorrhizal association with microplants in vitro and in vivo.
The family Trichodoridae was established by Thorne in 1935 but it remained of limited taxonomie interest until 1951 when Christie and Perry associated Trichodorus christie (now Paratrichodorus minor) with a "stubby root disease" that affected certain crops in Florida, USA and interest further increased from 1960 when P. pachydermus was implicated as a vector of the economically important tobacco raule virus. Such discoveries gave an impetus to studies on many aspects of the biology of trichodorid nematodes with a consequent proliferation of new species described from different parts of the world. The number of species increased from twelve in 1957 to a present day total exceeding eighty. This rapid expansion in the number of species was accompanied by several reappraisals of the taxonomy and systematies of the family, the most notable changes being the creation of the genus Paratrichodorus by Siddiqi in 1974 and the recognition of the monodelphic genera Monotrichodorus and Allotrichodorus respectively by Andrassy in 1976 and Rodriguez-M, Sher and Siddiqi in 1978. Reliable and unambiguous identification of taxa is dependent on the known reliability of a range of characters, whieh remains of paramount importance in taxonomy even when biochemical and molecular methodology is available. In this book each of the species, including synonyms and species inquirenda, that comprise the family Trichodoridae is re-described from meticulous mieroscopie examination of type specimens, material from official nematode collections and populations in the field.
Mechanisms and Deployment of Resistance in Trees to Insects is a worldwide synthesis of tree resistance to insects. The contributions are by senior scientists and represent all the major forested regions of the world. The book constitutes a comprehensive treatment of the state of our knowledge on patterns of resistance by insect guilds and how this knowledge can be deployed to achieve the management of damaging forest insects. This book will serve as an essential reference book for all researchers and practitioners attempting to manage forest pests using genetic resistance.
Plant-Pathogen Interactions: Methods and Protocols provides key
methods, approaches, and strategies to dissect the plant defense
response. Addressing methods to identify and characterize plant
resistance genes as well as pathogen-associated molecules that
trigger the plant defense response, this volume creates a better
understanding of the interactions between pathogens and their
hosts, which will help to develop better methods for disease
control in plants and animals.
In the summer of 1997 some twelve lecturers and sixty students met for ten days in Budapest Hungary in a NATO Advanced Studies Institute (ASI) to consider "New Scientific and Technical Aspects of Verification of the Biological and Toxin Weapons Convention." In many ways the meeting was ahead of its time. The Ad Hoc Group was only then about to move to the discussion of a rolling text of the Protocol to the Biological and Toxin Weapons Convention (BTWC). It had been mandated to negotiate the Protocol by the Special Conference which had considered the work of the VEREX process that had taken place following the 1991 Third Review Conference of the Convention. Now, in late 1999, after much further negotiation of the text of the Protocol we are moving towards the endgame of the negotiations. Nevertheless, the scientific and technical issues discussed in the ASI in Hungary continue to be of direct relevance to the verification of the Convention and will continue to be relevant as the eventual Protocol moves from agreement through a Preparatory Commission stage and into full implementation over the next several years. The papers in this volume are much as they were presented in Budapest both in order of presentation and in content. They were designed by the ASI co-directors, Professor Graham Pearson and Ambassador Tibor Toth (Chairman of the Ad Hoc Group) to provide an integrated overview and in-depth analysis of the issues at stake.
Wheat breeders have achieved significant results over the last fifty years in research on mankind's one of the most important crops. Classical genetic and breeding methods, far broader international cooperation than was experienced in earlier periods, and improvements in agronomic techniques have led to previously unimaginable development in the utilisation of wheat for human consumption. The contribution of wheat researchers is particularly noteworthy since these results have been achieved at a time when the world population has grown extremely dynamically. Despite this demographic explosion, of a proportion never previously experienced, thousands of millions of people have been saved from starvation, thus avoiding unpredictable social consequences and situations irreconcilable with human dignity. Despite these developments in many regions of the world food supplies are still uncertain and the increase in the world's wheat production has not kept pace with the population increase during the last decade. Due to the evils of civilisation and the pollution of the environment there is a constant decline in the per capita area of land suitable for agricultural production. Based on population estimates for 2030, the present wheat yield of around 600 million tonnes will have to be increased to almost 1000 million tonnes if food supplies are to be maintained at the present level.
This series originated during a visit of prof. K. G. Mukerji to the CNR Plant Protection Institute at Bari, Italy, in November 2005. Both editors convened to produce a series of five volumes focusing, in a multi-disciplinary approach, on recent advances and achievements in the practice of crop protection and integrated pest and disease management. This fourth Volume deals with management of nematodes parasitic of tree crops, and includes a section on tropical fruit crops and commodities, as well as a second section on tree crops from more temperate areas. The latter also includes a chapter updating the current knowledge about the pine wood nematode, Bursaphelenchus xylophilus. Volume 4 flanks Volume 2 of this IMPD series, which focused on management of vegetable and grain crops nematodes. Nematodes are a very successful, diversified and specialised animal group, present in nature in any ecological niche. Among nematode species, only a reduced number feeds on plants, of which a few species cause severe economic impacts on crop productions. Plant parasitic nematodes represent an important concern for a broad range of agricultural productions and systems, worldwide. This statement explains the attention devoted in last decades to nematodes, and the research and technical efforts invested for their control.
Research on the interaction between plants and microbes continues to attract increasing attention, both within the field as well as in the scientific community at large. Many of the major scientific journals have recently reviewed various aspects of the field. Several papers dealing with plant-microbe interactions have been featured on the covers of scientific publications in the past several months, and the lay press have recently presented feature articles of this field. An additional sign of the interest in this field is that the International Society of Molecular Plant-Microbe Interactions has almost 500 members. This book is a collection of the papers that were given at the Sixth Inlernational Symposium on the Molecular Genetics of Plant-Microbe Interactions which was held in Seattle, Washington in July, 1992. Approximately 650 scientists attended and approximately 50 lectures covering the topics of Agrobacterium-plant interactions, Rhizobium-plant interactions, bacteria-plant interactions, fungal-plant interactions and new aspects of biotechnology were presented. In addition, many sessions were devoted to the plant response to the microbe. Over 400 posters were presented of which the authors of 20 were selected to give an oral presentation. These papers are included in this volume as well. The symposium also included speakers whose research interests are not directly related to plant-microbe interactions but who are at the cutting edge of research areas that impact on the theme of the symposium. These individuals kindly agreed to summarize their talks and their papers are also included.
Actin is an extremely abundant protein that comprises a dynamic polymeric network present in all eukaryotic cells, known as the actin cytoskeleton. The structure and function of the actin cytoskeleton, which is modulated by a plethora of actin-binding proteins, performs a diverse range of cellular roles. Well-documented functions for actin include: providing the molecular tracks for cytoplasmic streaming and organelle movements; formation of tethers that guide the cell plate to the division site during cytokinesis; creation of honeycomb-like arrays that enmesh and immobilize plastids in unique subcellular patterns; supporting the vesicle traffic and cytoplasmic organization essential for the directional secretory mechanism that underpins tip growth of certain cells; and coordinating the elaborate cytoplasmic responses to extra- and intracellular signals. The previous two decades have witnessed an immense accumulation of data relating to the cellular, biochemical, and molecular aspects of all these fundamental cellular processes. This prompted the editors to put together a diverse collection of topics, contributed by established international experts, related to the plant actin cytoskeleton. Because the actin cytoskeleton impinges on a multitude of processes critical for plant growth and development, as well as for responses to the environment, the book will be invaluable to any researcher, from the advanced undergraduate to the senior investigator, who is interested in these areas of plant cell biology.
A state-of-the-art overview of the intricate functional virus/host relationships that allow a virus or viroid to move cell-to-cell and systemically through the plant, as well as from plant to plant, and, thus, to spread infection. The book also illustrates the mechanisms by which viruses overcome plant defence responses, such as RNA silencing. Arabidopsis is used as an illustration of a plant host eminently suitable for genetic approaches to identify novel players in plant/virus interactions.
Mycotoxins continue to be a very serious threat to human health and a major concern for those entrusted with regulatingthesafetyoffoodandfoodproducts.Infectionofcerealsandothercrops, notablegrapevine, byFusarium, Aspergillus andPenicillium are a world-wide problem and recent epidemics in Europe, the USA and Canada have focused attention on this problem. A previous Special Issue of the European Journal of Plant Pathology (108 (7) 2003) was concerned with the nature of these toxins and the fungi that can produce them. The aim of this publication is to review the environmental factors that in?uence the success of these fungi as pathogens and as organisms affecting stored products, and to discuss how these factors can also in?uence the amounts of toxin that accumulate. These reviews were originally presented at a Workshop of the EU COST Action 835 entitled 'Agriculturally Important Toxigenic Fungi' (Chairperson Antonio Logrieco, Bari, Italy), held in East Malling, UK at the Horticultural Research International in September 2002. We hope the information provided will stimulate scientists world-wide to assess the risk of toxins accumulating in plants under a range of environmental conditions and that this will provide an insight into how the accumulation of these toxins can be kept to a minimum. XiangmingXu JohnBailey MichaelCooke EuropeanJournalofPlantPathology109: 645-667, 2003. (c) 2003KluwerAcademicPublishers.
Among the Horticultural Crops, Fruits and Vegetables (FV) are of primary - portance as the key source of essential components in an adequate and balanced human diet. FV have supported largely the daily food requirement of mankind since ages and even before man learned to grow cereal crops systematically. Over the years, growing FV has been the mainstay of rural economy and has emerged as an indispensable part of agriculture world over, offering farmers a wide range of crops in varied topography and climate. In certain parts of the world, FV are the major dietary staple. Apart from being a rich source of vitamins and minerals, this sector also contributes significantly in economy of the region or the nation. The increased income from per unit area of FV is far ahead and can not be compared with that of cereal crops. A recent survey by the Economist revealed that the world population has - creased by 90 % in the past 40 years while food production has increased only by 25 % per head. With an additional 1. 5 billion mouth to feed by 2020, farmers worldwide have to produce 39 % more. Looking at the load of the future food requirement, the global increased production of FV during last few years has absorbed the additional food requirement and accordingly the eating habits are also changing and shifting - wards more consumption of these commodities worldwide.
The Conference on Pseudomonas syringae which started in 1973 as an informal meeting of a group of scientists working on these bacteria in Angers, France, has become more and more important with time. Many meetings have been held since then: 1984, 1987, 1991, 1995, and 2002 in Cape Sounion, Greece; Lisbon, Portugal; Florence, Italy; Berlin, Germany; and Maratea, Italy; respectively. This Conference is considered as the most important scientific forum in which recent advances in different research aspects on Pseudomonas syringae, a plant pathogenic bacterial species that includes a high number of pathogens (referred as pathovars) and Related Pathogens such as Acidovorax, Burkholderia, Ralstonia, affecting several economically important crops. The proceedings resulting from these meetings are considered as valuable sources of information related to this group of pathogens. The interest in organising this conference regularly is reflected by the attendance of more than 80 scientists from 20 countries worldwide, who participated at the 7th International Conference on Pseudomonas syringae pathovars and related pat- gens organized by the Institut Agronomique et Veterinaire Hassan II in Agadir, Morocco, from 13th to 16th November 2006."
Investigations on various aspects of plant-pathogen interactions have the ultimate aim of providing information that may be useful for the development of effective crop disease management systems. Molecular techniques have accelerated the formulation of short- and long-term strategies of disease management. Exclusion and eradication of plant pathogens by rapid and precise detection and identification of microbial pathogens in symptomatic and asymptomatic plants and planting materials by employing molecular methods has been practiced extensively by quarantines and certification programs with a decisive advantage. Identification of sources of resistance genes, cloning and characterization of desired resistance genes and incorporation of resistance gene(s) into cultivars and transformation of plants with selected gene(s) have been successfully performed by applying appropriate molecular techniques. Induction of resistance in susceptible cultivars by using biotic and abiotic inducers of resistance is a practical proposition for several crops whose resistance levels could not be improved by breeding or transformation procedures. The risks of emergence of pathogen strains less sensitive or resistant to chemicals have been reduced appreciably by rapid identification of resistant strains and monitoring the occurrence of such strains in different geographical locations.
In the context of increasing international concern for food and environmental quality, use of Plant Growth-Promoting Rhizobacteria (PGPR) for reducing chemical inputs in agriculture is a potentially important issue. PGPR are root-colonizing bacteria that exert beneficial effects on plant growth and development, but they can be also employed in the control of plant pathogens, for enhancing the efficiency of fertilizers, and for degrading xenobiotic compounds. This book provides an update by renowned international experts on the most recent advances in the ecology of these important bacteria, the application of innovative methodologies for their study, their interaction with the host plant, and their potential application in agriculture.
Studies on molecular biology of pathogens, infection process and disease resistance, have provided information essentially required to understand the vulnerable stages at which the pathogens can be tackled effectively and to adopt novel strategies to incorporate disease resistance genes from diverse sources and /or to induce resistance of cultivars with desirable agronomic attributes using biotic or abiotic agents. The nature of interaction between the gene products of the pathogen and plant appears to determine the outcome of the interaction resulting in either disease progression or suppression. Transgenic plants with engineered genes show promise for effective exploitation of this approach for practical application. Research efforts during the recent years to sequence the whole genomes of the pathogens and plants may lead to development of better ways of manipulating disease resistance mechanisms enabling the grower to achieve higher production levels and the consumer to enjoy safer food and agricultural products. Experimental protocols included in appropriate chapters will be useful for researchers and graduate students.
Microbial toxins are secondary metabolites that accumulate in the organism and, to a large extent, are metabolically inactive towards the organism that produces them. The discovery of penicillin, a secondary metabolite of Penicillium notatum West (= P. chrysogenum Thom), in 1929 marked a milestone in the development of antibiotics (microbial toxins). In the intensive studies that followed this discovery, scientists chemically characterized several new molecules (toxins) from secondary metabolites of microbes, some having a definite function in causing pathogenesis in plants. Toxins are also known to playa significant role in inciting animal (human) and insect diseases and as plant growth regulators. Many common toxins have also been isolated from different microbes exhibiting a wide spectrum of biological activity. Toxins are broadly divisible into several characteristic groupings - polyketides, oxygen heterocyclic compounds, pyrons, terpenoidS, amino acids - diketopiperazines, polypeptides etc. Recent research has indicated that these toxins play an important role in plant pathogenesis, disease epidemics, plant breeding, biological control of plant pathogens and insect pests, induced resistance, plant-pathogen interactions etc. Toxins produced by weed pathogens are exploited as lead molecules in developing environmentally friendly herbicides.
Ascochyta blights consistently affect large areas of grain legume production (pea, lentil, chickpea and faba bean) in all countries where they are cultivated. These diseases are capable of causing large yield losses under conducive environmental conditions. This book considers the state of the art by taking a comparative approach of Ascochyta blight diseases of cool season food and feed legumes. Topics considered are pathogen diversity, legume genetics and breeding, and integrated disease management. Reprinted from European Journal of Plant Pathology, Volume 119, No. 1, 2007
Quite simply, this is required reading for anyone involved in managing agricultural research. With a wealth of practical solutions and advice, it offers a how-to guide for managers as well as highlighting the differences in the way that different nations approach this key area of research - one of the most widespread forms of inquiry in the world. The lessons that can be learned from this brilliant study apply in equal measure to developed and developing nations.
Pine forests face a global threat of pine wilt disease, which is being spread by vector beetles carrying pathogenic nematodes from dead trees to healthy ones. Among the host pines there are varying degrees of susceptibility, and nematode strains also contain a variety of virulences, both of which factors help to determine whether infected host trees will die or survive. As well, biotic and abiotic environmental factors influence the fate of infected trees. This book describes the history of the disease, pathogenic nematodes, vector beetles, the etiology and ecology of the disease, microorganisms involved, and control methods that utilize host resistance and biological control agents. Concrete, comprehensive, and the most up-to-date knowledge about this worldwide forest epidemic is presented for readers, enabling them to understand the nature and epidemic threat of pine wilt disease.
When I conceived this book, what I had in mind was what I did not know about coffee-parasitic nematodes (CPNs). Indeed, after reading many papers and several chapters in books, I felt far from having a comprehensive understanding of the subject. Not only would it be a daunting task to retrieve the numerous articles, reports, theses and dissertations on CPNs published since 1878, but it would also be impossible to learn, on my own, from all the enormous experience acquired by nematologists and coffee growers in so many countries. Therefore, this book is dedicated to those with restless minds, who want to know more about CPNs and their importance in coffee production worldwide. This book has been diligently written by top scientists in their areas of expertise or country, and it has been meticulously edited to guarantee precision without compromising an enjoyable read. I learned a lot from this book...I'm sure you will too. Finally, I'd like to thank Zuzana Bernhart from Springer, who believed in this project and decided to publish it; Susan Casement, who revised all chapters for grammatical correctness; and all the contributors, without whom this book would never have became a reality. Campos dos Goytacazes, RJ, Brazil Ricardo M. Souza vii Contents Part I The Crop 1 Coffee: The Plant and its Cultivation............................. 3 Henrique D. Vieira 2 The Coffee Industry: History and Future Perspectives.............. 19 Denis O. Seudieu Part II The Root-Lesion Nematode, Pratylenchus spp.
Plant disease epidemiology deals with diseases in plant populations. During the past century, it has become a vibrant field of science, achieving significant conceptual innovations with an important impact on the management of plant diseases. Plant disease epidemiology mobilises concepts and methods from ecology, genetics, environmental physics, botany, and mathematics. It deals with cultivated and non-cultivated plants in environments where human activities may have had an impact. Now, plant disease epidemiology faces important questions. Global climate is changing at a rapid rate: will it render plant diseases more, or less, harmful to man-made ecosystems? There is much debate on this issue, partly because climate has sometimes very large effects on the local environment of growing plant canopies, and because the physical micro-environment so strongly influences plant diseases and their consequences on ecosystem functioning and performance and the way they are managed. Plant disease epidemiologists have a strong scientific tradition in studying climate-pathogen-disease relationships. Biodiversity is also of global concern. The decline of global biodiversity that is currently taking place has been referred to as the sixth great extinction process our planet has experienced during its history, but this time, it is man-made. Generations of plant pathologists, and especially, of plant disease epidemiologists, have been dealing with biodiversity. It is from this diversity that presumably the most potent instrument for disease management has been developed by plant pathologists: host plant resistance. Host plant diversity, and the disease resistance genes it harbours, can be deployed over time and space, according to epidemiological principles. Sustainable production and protection systems also need to be devised which could exploit scarcer resources sparingly, and if possible enhance the resource base. Plant disease epidemiologists alone cannot provide answers to such questions, but certainly could significantly contribute to these new strategies. This book provides an overview of some of the latest research in plant disease epidemiology from researchers at the cutting edge of this important discipline. |
You may like...
Plant Diseases and Food Security in the…
Peter Scott, Richard Strange, …
Hardcover
R3,540
Discovery Miles 35 400
Microbiome in Plant Health and Disease…
Vivek Kumar, Ramprasad, …
Hardcover
R4,298
Discovery Miles 42 980
|