![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant pathology & diseases
Each plant-pathogen interaction involves a two-way molecular communication. On one hand, the pathogen perceives signals from the plant, secretes chemical arsenals to establish infection courts, and produces metabolites that disrupt structural integrity, alter cellular function, and circumvent host defenses. On the other hand, the plant senses the signals from the pathogen, reinforces its cell walls, and accumulates phytoalexins and pathogenesis-related proteins in an attempt to defend itself. The production of pathogenicity and virulence factors by the pathogen, the elicitation of defense mechanisms by the plant, and the dynamic interaction of the two are the focal points of this book. The book will be of interest to researchers and advanced undergraduate and graduate students in the areas of plant pathology, plant physiology, and plant biochemistry.
Straminipilous Fungi presents a critical comparative review of the morphology and ultrastructure, morphogenesis, cytology, molecular biology and evolution of the biflagellate fungi. These organisms encompass the fungi formerly called oomycetes; taxonomically related heterotrophs studied by mycologists; plasmodiophorids and other heterotrophs. Appropriate comparisons are made with chromophyte algae, marine heterotrophs and chytridiaceous fungi. Little-known taxa which have been referred to the various orders of flagellate fungi are also listed together with citations. A new hierarchical classification is presented which is supported by systematic accounts and synoptic keys. Dichotomous keys based on habitat and habit are given to all known species of lagenidiaceous fungi, labyrinthulids and plasmodiophorids. A unique 'one stop' reference resource for plant pathologists is provided by the binominal lists, including host-related lists for the downy mildews. The book, including ca 4000 references, is a major text for post-graduate and research workers, particularly freshwater and marine biologists, soil ecologists and plant pathologists.
This volume focuses on integrated pest and disease management (IPM/IDM) and biocontrol of some key diseases of perennial and annual crops. It continues a series originated during a visit of prof. K. G. Mukerji to the CNR Plant Protection Institute in Bari (Italy), in November 2005. Both editors aim at a series of five volumes embracing, in a multi-disciplinary approach, advances and achievements in the practice of crop protection, for a wide range of plant parasites and pathogens. Two volumes of the series were already produced, dedicated to general concepts in IPM and to management and biocontrol of nematodes of grain crops and vegetables. This Volume deals, in particular, with diseases due to bacteria, phytoplasma and fungi. Every day, in any agroecosystem, farmers face problems related to plant diseases. Since the beginning of agriculture, indeed, and probably for a long time in the future, farmers will continue to do so. Every year, plant diseases cause severe losses in the global production of food and other agricultural commodities, worldwide. Plant diseases are not limited to episodic events occurring in single farms or crops, and should not be regarded as single independent cases, affecting only farms on a local scale. The impact of plant disease epidemics on food shortage ignited, in the last two centuries, deep cultural, social and demographic changes, affecting million human beings, through i. e. migration, death and hunger.
This volume explores modern concepts of trophic and guild interactions among natural enemies in natural and agricultural ecosystems - a field that has become a hot topic in ecology and biological control over the past decade. It is the first book on trophic and guild interactions to make the link to biological control, and is compiled by internationally recognized scientists who have combined their expertise.
This, the first volume of the Integrated Management of Plant Pests and Diseases book series, presents general concepts on integrated pest and disease management. Section one includes chapters on infection models, resurgence and replacement, plant disease epidemiology and effects of climate change in tropical environments. The second section includes remote sensing and information technology. Finally, the third section covers molecular aspects of the subject."
The book comprises the proceedings of the 7th International Wheat Conference, held in Mar del Plata, Argentina, at the end of 2005. Leading scientists from all over the world, specialized in different areas that contribute to the better understanding of wheat production and use, reviewed the present achievements and discussed the future challenges for the wheat crop. The latter are related to producing safe wheat grain in increasingly stressed environments, maintaining at the same time the sustainability of natural resources, in order to meet the needs of food for a growing population. Topics such as breeding for resistance to biotic and abiotic stresses, breeding for improved industrial and nutritional quality, crop and natural resources management, physiology of wheat production, biotechnology and cytogenetics, and conservation and management of genetic resources were covered during the Conference. Results of the extended use of molecular tools in different areas and their contribution to the faster achievement of breeding goals were presented. This book provides the scientific wheat community with the possibility of getting key contributions to that overall sight and an updated view of the main points of interest in those fields of research.
For a long time there has been a critical need for a book to assess the genomics of tropical plant species. At last, here it is. This brilliant book covers recent progress on genome research in tropical crop plants, including the development of molecular markers, and many more subjects. The first section provides information on crops relevant to tropical agriculture. The book then moves on to lay out summaries of genomic research for the most important tropical crop plant species.
It is my privilege to contribute the foreword for this unique volume entitled: "Plant Tissue Culture Engineering," edited by S. Dutta Gupta and Y. Ibaraki. While there have been a number of volumes published regarding the basic methods and applications of plant tissue and cell culture technologies, and even considerable attention provided to bioreactor design, relatively little attention has been afforded to the engineering principles that have emerged as critical contributions to the commercial applications of plant biotechnologies. This volume, "Plant Tissue Culture Engineering," signals a turning point: the recognition that this specialized field of plant science must be integrated with engineering principles in order to develop efficient, cost effective, and large scale applications of these technologies. I am most impressed with the organization of this volume, and the extensive list of chapters contributed by expert authors from around the world who are leading the emergence of this interdisciplinary enterprise. The editors are to be commended for their skilful crafting of this important volume. The first two parts provide the basic information that is relevant to the field as a whole, the following two parts elaborate on these principles, and the last part elaborates on specific technologies or applications.
Biological control is among the most promising methods for control of pests, diseases and weeds, and this book treats ecological and societal aspects together for the first time. The aim is to evaluate the significance of certain biological properties like biodiversity and natural habitats. In a societal approach terms like 'consumer's attitude', 'risk perception', 'learning and education' and 'value triangle' are recognized as significant for biological production and human welfare.
Biological control of plant diseases and plant pathogens is of great significance in forestry and agriculture. This book, the first of its kind, is organized around the indication that allelochemicals can be employed for biological control of plant pathogens and plant diseases. This volume focuses on discovery and development of natural product based fungicides for agriculture, direct use of allelochemicals, and application of allelopathy in pest management.
Feeding on Non-Prey Resources by Natural Enemies Moshe Coll Reports on the consumption of non-prey food sources, particularly plant materials, by predators and parasitoids are common throughout the literature (reviewed recently by Naranjo and Gibson 1996, Coll 1998a, Coll and Guershon, 2002). Predators belonging to a variety of orders and families are known to feed on pollen and nectar, and adult parasitoids acquire nutrients from honeydew and floral and extrafloral nectar. A recent publication by Wackers et al. (2005) discusses the p- visioning of plant resources to natural enemies from the perspective of the plant, exploring the evolutionary possibility that plants enhance their defenses by recru- ing enemies to food sources. The present volume, in contrast, presents primarily the enemies' perspective, and as such is the first comprehensive review of the nut- tional importance of non-prey foods for insect predators and parasitoids. Although the ecological significance of feeding on non-prey foods has long been underappreciated, attempts have been made to manipulate nectar and pollen ava- ability in crop fields in order to enhance levels of biological pest control by natural enemies (van Emden, 1965; Hagen, 1986; Coll, 1998a). The importance of n- prey foods for the management of pest populations is also discussed in the book."
Soybean genomics is of great interest as one of the most economically important crops and a major food source. This book covers recent advances in soybean genome research, including classical, RFLP, SSR, and SNP markers; genomic and cDNA libraries; functional genomics platforms; genetic and physical maps; and gene expression profiles. The book is for researchers and students in plant genetics and genomics, plant biology and pathology, agronomy, and food sciences.
Plant diseases can have an enormous impact on our lives. In a world where total crop failure can quickly lead to human misery and starvation, accurate diagnostics play a key role in keeping plants free from pathogens. In Plant Pathology: Techniques and Protocols, expert researchers provide methods which are vital to the diagnosis of plant diseases across the globe, addressing all three categories of plant pathology techniques: traditional, serological, and nucleic acid. Chapters examine recent and developing issues with crop identity and authenticity, allowing workers to genotype samples from two major food groups. Composed in the highly successful Methods in Molecular Biology series format, each chapter contains a brief introduction, step-by-step methods, a list of necessary materials, and a Notes section which shares tips on troubleshooting and avoiding known pitfalls. Authoritative and reader-friendly, Plant Pathology: Techniques and Protocols is an incredible guide which will soon prove to be indispensable, both to novices and expert researchers alike."
PGPR have gained world wide importance and acceptance for agricultural benefits. These microorganisms are the potential tools for sustainable agriculture and the trend for the future. Scientific researches involve multidisciplinary approaches to understand adaptation of PGPR to the rhizosphere, mechanisms of root colonization, effects on plant physiology and growth, biofertilization, induced systemic resistance, biocontrol of plant pathogens, production of determinants etc. Biodiversity of PGPR and mechanisms of action for the different groups: diazotrophs, bacilli, pseudomonads, and rhizobia are shown. Effects of physical, chemical and biological factors on root colonization and the proteomics perspective on biocontrol and plant defence mechanism is discussed. Visualization of interactions of pathogens and biocontrol agents on plant roots using autofluorescent protein markers has provided more understanding of biocontrol process. Commercial formulations and field applications of PGPR are detailed.
Studies on the phenomenon of plant pathogenesis (disease development) have been useful to have a deep insight into the interactions between host plant and the pathogen. Depending on the levels of susceptibility (compatibility) or resistance (incompatibility) of the host plant and virulence of the pathogen, disease development may progress, either leading to symptom expression or result in the suppression of pathogen proliferation. Molecular techniques have been applied to elucidate the nature of interactions between the gene products of the plant and pathogen at cellular and molecular levels. Successful evasion of host's surveillance system and subsequent activities of metabolites of the pathogen (enzymes and toxins) encoded by pathogen genes counteracting the effects of various defense-related antimicrobial compounds present already or produced by the host plants, after initiation of infection have been critically studied by applying various molecular techniques. In addition to studying various phases of disease development in individual plants, molecular methods have been demonstrated to be effective, in gathering data on various aspects of epidemiology under natural conditions where the interaction of pathogen with populations of plants is influenced significantly by the environmental conditions existing in different ecosystems. This volume focuses on the possibility of applying the knowledge on pathogenesis and molecular epidemiology to determine the vulnerable stages in the life cycles of the pathogens that can be disrupted to achieve more effective disease control.
The family Trichodoridae was established by Thorne in 1935 but it remained of limited taxonomie interest until 1951 when Christie and Perry associated Trichodorus christie (now Paratrichodorus minor) with a "stubby root disease" that affected certain crops in Florida, USA and interest further increased from 1960 when P. pachydermus was implicated as a vector of the economically important tobacco raule virus. Such discoveries gave an impetus to studies on many aspects of the biology of trichodorid nematodes with a consequent proliferation of new species described from different parts of the world. The number of species increased from twelve in 1957 to a present day total exceeding eighty. This rapid expansion in the number of species was accompanied by several reappraisals of the taxonomy and systematies of the family, the most notable changes being the creation of the genus Paratrichodorus by Siddiqi in 1974 and the recognition of the monodelphic genera Monotrichodorus and Allotrichodorus respectively by Andrassy in 1976 and Rodriguez-M, Sher and Siddiqi in 1978. Reliable and unambiguous identification of taxa is dependent on the known reliability of a range of characters, whieh remains of paramount importance in taxonomy even when biochemical and molecular methodology is available. In this book each of the species, including synonyms and species inquirenda, that comprise the family Trichodoridae is re-described from meticulous mieroscopie examination of type specimens, material from official nematode collections and populations in the field.
This book is based mainly on invited and offered papers presented at the Second International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures held at University College, Cork, Ireland in September 1996, with additional invited papers. The First International Symposium on Bacterial and Bacteria-like Contaminants of Plant Tissue Cultures was held at the same venue in 1987 and was published as Acta Horticulturae volume 225, 1988. In the intervening years there have been considerable advances in both plant disease diagnostics and in the development of structured approaches to the management of disease and microbial contamination in micropropagation. These approaches have centred on attempts to separate, spatially, the problems of disease transmission and laboratory contamination. Disease-control is best achieved by establishing pathogen-free cultures while laboratory contamination is based on subsequent good working practice. Control of losses due to pathogens and microbial contamination in vitro addresses, arguably, the most importance causes of losses in the industry; nevertheless, losses at and post establishment can also be considerable due to poor quality microplants or micro-shoots. In this symposium, a holistic approach to pathogen and microbial contamination control is evident with the recognition that micropropagators must address pathogen and microbial contamination in vitro, and diseases and microplant failure at establishment. There is increasing interest in establishing beneficial bacterial and mycorrhizal association with microplants in vitro and in vivo.
This series originated during a visit of prof. K. G. Mukerji to the CNR Plant Protection Institute at Bari, Italy, in November 2005. Both editors convened to produce a series of five volumes focusing, in a multi-disciplinary approach, on recent advances and achievements in the practice of crop protection and integrated pest and disease management. This fourth Volume deals with management of nematodes parasitic of tree crops, and includes a section on tropical fruit crops and commodities, as well as a second section on tree crops from more temperate areas. The latter also includes a chapter updating the current knowledge about the pine wood nematode, Bursaphelenchus xylophilus. Volume 4 flanks Volume 2 of this IMPD series, which focused on management of vegetable and grain crops nematodes. Nematodes are a very successful, diversified and specialised animal group, present in nature in any ecological niche. Among nematode species, only a reduced number feeds on plants, of which a few species cause severe economic impacts on crop productions. Plant parasitic nematodes represent an important concern for a broad range of agricultural productions and systems, worldwide. This statement explains the attention devoted in last decades to nematodes, and the research and technical efforts invested for their control.
Actin is an extremely abundant protein that comprises a dynamic polymeric network present in all eukaryotic cells, known as the actin cytoskeleton. The structure and function of the actin cytoskeleton, which is modulated by a plethora of actin-binding proteins, performs a diverse range of cellular roles. Well-documented functions for actin include: providing the molecular tracks for cytoplasmic streaming and organelle movements; formation of tethers that guide the cell plate to the division site during cytokinesis; creation of honeycomb-like arrays that enmesh and immobilize plastids in unique subcellular patterns; supporting the vesicle traffic and cytoplasmic organization essential for the directional secretory mechanism that underpins tip growth of certain cells; and coordinating the elaborate cytoplasmic responses to extra- and intracellular signals. The previous two decades have witnessed an immense accumulation of data relating to the cellular, biochemical, and molecular aspects of all these fundamental cellular processes. This prompted the editors to put together a diverse collection of topics, contributed by established international experts, related to the plant actin cytoskeleton. Because the actin cytoskeleton impinges on a multitude of processes critical for plant growth and development, as well as for responses to the environment, the book will be invaluable to any researcher, from the advanced undergraduate to the senior investigator, who is interested in these areas of plant cell biology.
Research on the interaction between plants and microbes continues to attract increasing attention, both within the field as well as in the scientific community at large. Many of the major scientific journals have recently reviewed various aspects of the field. Several papers dealing with plant-microbe interactions have been featured on the covers of scientific publications in the past several months, and the lay press have recently presented feature articles of this field. An additional sign of the interest in this field is that the International Society of Molecular Plant-Microbe Interactions has almost 500 members. This book is a collection of the papers that were given at the Sixth Inlernational Symposium on the Molecular Genetics of Plant-Microbe Interactions which was held in Seattle, Washington in July, 1992. Approximately 650 scientists attended and approximately 50 lectures covering the topics of Agrobacterium-plant interactions, Rhizobium-plant interactions, bacteria-plant interactions, fungal-plant interactions and new aspects of biotechnology were presented. In addition, many sessions were devoted to the plant response to the microbe. Over 400 posters were presented of which the authors of 20 were selected to give an oral presentation. These papers are included in this volume as well. The symposium also included speakers whose research interests are not directly related to plant-microbe interactions but who are at the cutting edge of research areas that impact on the theme of the symposium. These individuals kindly agreed to summarize their talks and their papers are also included.
A state-of-the-art overview of the intricate functional virus/host relationships that allow a virus or viroid to move cell-to-cell and systemically through the plant, as well as from plant to plant, and, thus, to spread infection. The book also illustrates the mechanisms by which viruses overcome plant defence responses, such as RNA silencing. Arabidopsis is used as an illustration of a plant host eminently suitable for genetic approaches to identify novel players in plant/virus interactions.
Mechanisms and Deployment of Resistance in Trees to Insects is a worldwide synthesis of tree resistance to insects. The contributions are by senior scientists and represent all the major forested regions of the world. The book constitutes a comprehensive treatment of the state of our knowledge on patterns of resistance by insect guilds and how this knowledge can be deployed to achieve the management of damaging forest insects. This book will serve as an essential reference book for all researchers and practitioners attempting to manage forest pests using genetic resistance.
In the summer of 1997 some twelve lecturers and sixty students met for ten days in Budapest Hungary in a NATO Advanced Studies Institute (ASI) to consider "New Scientific and Technical Aspects of Verification of the Biological and Toxin Weapons Convention." In many ways the meeting was ahead of its time. The Ad Hoc Group was only then about to move to the discussion of a rolling text of the Protocol to the Biological and Toxin Weapons Convention (BTWC). It had been mandated to negotiate the Protocol by the Special Conference which had considered the work of the VEREX process that had taken place following the 1991 Third Review Conference of the Convention. Now, in late 1999, after much further negotiation of the text of the Protocol we are moving towards the endgame of the negotiations. Nevertheless, the scientific and technical issues discussed in the ASI in Hungary continue to be of direct relevance to the verification of the Convention and will continue to be relevant as the eventual Protocol moves from agreement through a Preparatory Commission stage and into full implementation over the next several years. The papers in this volume are much as they were presented in Budapest both in order of presentation and in content. They were designed by the ASI co-directors, Professor Graham Pearson and Ambassador Tibor Toth (Chairman of the Ad Hoc Group) to provide an integrated overview and in-depth analysis of the issues at stake.
Plant-Pathogen Interactions: Methods and Protocols provides key
methods, approaches, and strategies to dissect the plant defense
response. Addressing methods to identify and characterize plant
resistance genes as well as pathogen-associated molecules that
trigger the plant defense response, this volume creates a better
understanding of the interactions between pathogens and their
hosts, which will help to develop better methods for disease
control in plants and animals.
Wheat breeders have achieved significant results over the last fifty years in research on mankind's one of the most important crops. Classical genetic and breeding methods, far broader international cooperation than was experienced in earlier periods, and improvements in agronomic techniques have led to previously unimaginable development in the utilisation of wheat for human consumption. The contribution of wheat researchers is particularly noteworthy since these results have been achieved at a time when the world population has grown extremely dynamically. Despite this demographic explosion, of a proportion never previously experienced, thousands of millions of people have been saved from starvation, thus avoiding unpredictable social consequences and situations irreconcilable with human dignity. Despite these developments in many regions of the world food supplies are still uncertain and the increase in the world's wheat production has not kept pace with the population increase during the last decade. Due to the evils of civilisation and the pollution of the environment there is a constant decline in the per capita area of land suitable for agricultural production. Based on population estimates for 2030, the present wheat yield of around 600 million tonnes will have to be increased to almost 1000 million tonnes if food supplies are to be maintained at the present level. |
![]() ![]() You may like...
The Galloway Hoard - Viking-age Treasure
Martin Goldberg, Mary Davis
Hardcover
R435
Discovery Miles 4 350
Asian Qualitative Research in Tourism…
Paolo Mura, Catheryn Khoo-Lattimore
Hardcover
R4,438
Discovery Miles 44 380
A Manifesto For Social Change - How To…
Moeletsi Mbeki, Nobantu Mbeki
Paperback
![]()
|