![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant pathology & diseases
This book covers the important diseases and pests of potato which are of global significance. The pests and diseases in potato lead to huge economic losses by reducing the yield and quality of the produce. This book describes major pests and diseases in detail with particular emphasis on the latest developments with respect to their biology, ecology, and management. It highlights the importance of virus infection for seed potato production and diagnostic symptoms, along with management guidelines. The book brings forth tips for judicious use of pesticides for sustainable potato production and management of pesticide resistance. Use of novel approaches such as RNA interference, genome editing, and other genomic resources for drug designing in diseases and pest management is also emphasized in the book. This book is of interest to teachers, researchers, extension workers, potato growers, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture and plant pathology. National and international agricultural scientists and policy makers will also find this to be a useful read.
Global industrial growth has resulted in numerous pollutants being introduced into the environment. It has additionally caused decreased water availability for agricultural activity in developing countries, which, in turn, has compelled farmers to use wastewater irrigation. In advanced agricultural systems, farmers are adapting various strategies to achieve a higher yield and thus sustain crop productivity. Consequent to the introduction of contaminants in the environment, soil pollutants have become a critical issue. Selection of disease-resistant, high-yielding crop varieties, and extensive fertilizer applications are quite common among farming communities. This book provides insight into environmental pollutants with special reference to their interference with plant nutrition. It additionally discusses the physiological aspects of plant nutrition. This book enhances current knowledge of the effects of pollutants on plant growth and physiology.
This book describes the three gasotransmitters nitric oxide (NO), hydrogen sulphide (H2S) and carbon monoxide (CO) and their function as intracellular signalling molecules in plants. Common properties are shared by NO, H2S and CO: they are beneficial at low concentrations but hazardous in higher amounts; they are small molecules of gas; they can freely cross cell membranes; their effects do not rely on receptors; they are generated enzymatically and their production is regulated; their functions can be mimicked by exogenous application; and their cellular effects may or may not be mediated by second messengers, but have specific cellular and molecular targets. In plants, many aspects of the biology of gasotransmitters remain completely unknown and generate intriguing questions, which will be discussed in this book.
Research on the interactions of plants and phytopathogenic fungi has become one of the most interesting and rapidly moving fields in the plant sciences, the findings of which have contributed tremendously to the development of new strategies of plant protection. This book offers insight into the state of present knowledge. Special emphasis is placed on recognition phenomena between plants and fungi, parasitization strategies employed by the phytopathogenic fungi, the action of phytotoxins, the compatibility of pathogens with host plants and the basic resistance of non-host plants as well as cultivar-specific resistance of host plants. Special attention is paid to the gene-for-gene hypothesis for the determination of race-specific resistance, its molecular models and to the nature of race non-specific resistance as well as the population dynamics of plants and the evolution of their basic resistance.
Invasive species have inspired concern for many reasons, including economic and environmental impacts in specific jurisdictions within particular countries. However, it is apparent that for some invasive plant species, political borders offer only weak barriers because these species have succeeded in invading many countries, emerging as threats at a global level. With this level of threat, a number of books on invasive plants and invasive species in general have been published in recent years, but none explicitly provides "global" coverage, perhaps because it is only recently that the full geographical, economic and environmental implications of widespread spread and adaptive nature of these particular invasive plants have been recognized. We plan to make this volume unique by profiling plant invasions in explicitly geographical contexts; on the world continents (Chapters 5-11), as well as islands (Chapter 12) and mountains (Chapter 13). This global approach is supported by an overview of invasion biology and recent advances (Chapter 1) and how different communities differ in invasibility (Chapter 2). Global factors influencing invasion are introduced in Chapter 3 (globalized trade) and Chapter 4 (climate change). Key species are profiled through geographic treatments, continent by continent (Chapters 5-11), and for islands (Chapter 12) and mountains (Chapter 13). The impact of invasive plants is highlighted in Chapter 14, both in biotic and economic terms, partly to counter the tendency for the young field of invasion biology to rely too much on anecdotal evidence. This chapters is also designed to bring home the message that these are serious problems that must be dealt with, as covered in the subsequent chapters. The book concludes with three chapters casting light on solutions to the many problems described in the rest of the volume. Chapter 15 features new, innovative technologies that are being developed to monitor and manage invasive plants, and Chapter 16 presents comprehensive strategies for public education and implementation of management on local and global scales. Chapter 17 describes different future scenarios depending on current trends in plant invasion and its management, just as climate change predictions employ various scenarios to project the future. The future is very much up to us, as humanity grapples with the question of how best to strategically meet the problems of global invasive plant problems that we ourselves have created that is further challenged by a changing climate. We are confident that this book will be of interest to invasion biologists, resource managers, and the legion of others who must deal with these invasive plants across the globe on a daily basis.
Among the Horticultural Crops, Fruits and Vegetables (FV) are of primary - portance as the key source of essential components in an adequate and balanced human diet. FV have supported largely the daily food requirement of mankind since ages and even before man learned to grow cereal crops systematically. Over the years, growing FV has been the mainstay of rural economy and has emerged as an indispensable part of agriculture world over, offering farmers a wide range of crops in varied topography and climate. In certain parts of the world, FV are the major dietary staple. Apart from being a rich source of vitamins and minerals, this sector also contributes significantly in economy of the region or the nation. The increased income from per unit area of FV is far ahead and can not be compared with that of cereal crops. A recent survey by the Economist revealed that the world population has - creased by 90 % in the past 40 years while food production has increased only by 25 % per head. With an additional 1. 5 billion mouth to feed by 2020, farmers worldwide have to produce 39 % more. Looking at the load of the future food requirement, the global increased production of FV during last few years has absorbed the additional food requirement and accordingly the eating habits are also changing and shifting - wards more consumption of these commodities worldwide.
The papers contained in this book were presented at a NATO Advanced Research Workshop (ARW) held at Cape Sounion, Athens, Greece, 19-24 May, 1991. The twenty-eight more comprehensive papers represent the key subjects of the ARW covered by invited speakers. The thirty-four short papers pre sented in a research format are contributions of those invited to participate in the ARW. There was a total of 70 participants from 21 countries. The objectives of the ARW were as follows: to review current knowledge of biological control of plant diseases and plant parasitic nematodes, with emphasis on mechanisms at the molecular, cellular, organismal, and ecosystem level; to examine and expand on current concepts and synthesize new concepts; to identify and prioritize limitations in the use of biological control for plant diseases and nematodes and the scientific research needed to overcome these limitations; and to develop strategies for biological control through management of resident agents or introduction of natural or modified agents."
This volume provides a collection of molecular protocols detailing the most common and modern techniques on fusarium wilt. Chapters guide readers through methods on initial isolation, molecular-based identification, genome characterization, generation of mutants, and characterization of interactions with other organisms including host plants. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Fusarium wilt: Methods and Protocols aims to be a valuable resource for mycologists, plant pathologists, microbiologists, geneticists, and other scientists that have an interest in members of the Fusarium oxysporum species complex or closely related fungi.
This contributed volume aims at bringing together all the genetic engineering tools for managing various types of crop pests. The main focus of this book is to explore the application of these tools in pest management. Major pest groups covered in this book are insects, mites and nematodes.The first section covers all major genetic tools and molecular approaches. The second section deals with genetic tools for of beneficial containing three chapters involving honey bees, silkworms and natural enemies. Next section deals with genetic interactions against pests in diverse geographical regions with special focus on Africa, Vietnam and Sri Lanka. Sections four and five addresses diverse aspects as management of pests, genetic behavior, gene expression, plasticity, pathways and interactions and options for mitigation of pests.It serves as a useful resource for professionals in the fields of entomology, agronomy, horticulture, ecology, and environmental sciences, as well as to agricultural producers and plant biotechnologists.
Seeds provide an efficient means in disseminating plant virus and viroid diseases. The success of modern agriculture depends on pathogen free seed with high yielding character and in turn disease management. There is a serious scientific concern about the transmission of plant viruses sexually through seed and asexually through plant propagules. The present book provides the latest information along with the total list of seed transmitted virus and viroid diseases at global level including, the yield losses, diagnostic techniques, mechanism of seed transmission, epidemiology and virus disease management aspects. Additional information is also provided on the transmission of plant virus and virus-like diseases through vegetative propagules. It is also well known that seed transmitted viruses are introduced into new countries and continents during large-scale traffic movements through infected germplasm and plant propogules. The latest diagnostic molecular techniques in different virus-host combinations along with disease management measures have been included. The book shall be a good reference source and also a text book to the research scientists, teachers, students of plant pathology, agriculture, horticulture, life sciences, green house managers, professional entrepreneurs, persons involved in quarantines and seed companies. This book has several important features of seed transmitted virus diseases and is a good informative source and thus deserves a place in almost all university libraries, seed companies and research organizations.
This volume focuses on recent advances in the biochemical and molecular analysis of different families of phospholipases in plants and their roles in signaling plant growth, development and responses to abiotic and biotic cues. The hydrolysis of membrane lipids by phospholipases produces different classes of lipid mediators, including phosphatidic acid, diacylglycerol, lysophospholipids, free fatty acids and oxylipins. Phospholipases are grouped into different families and subfamilies according to their site of hydrolysis, substrate usage and sequence similarities. Activating one or more of these enzymes often constitutes an early, critical step in many regulatory processes, such as signal transduction, vesicular trafficking, secretion and cytoskeletal rearrangements. Lipid-based signaling plays pivotal roles in plant stress responses, cell size, shape, growth, apoptosis, proliferation, and reproduction.
The beetle genus Agrilus has over 3000 species which makes it the most numerous in the Animal Kingdom. Many species are serious pests of plants with high invasive potential. Among them, the notoriously known Agrilus planipennis invaded from Asia to North America where it killed tens of millions of ash trees, caused regulatory agencies to enforce quarantines and cost municipalities, property owners, nursery operators and forest products industries tens of millions of dollars. The monograph provides coherent, comprehensive and critical review on all known host plants for more than 680 Agrilus species. All host plants have assigned the confidence index from 0-3 based on the evaluated reliability which eliminates false records. All original and subsequent references for particular plants are cited at each Agrilus species. Data are organized from both, insect and plant viewpoints. Results are analyzed and illustrated by graphs and diagrams. The main impact of the monograph is seen in entomology, phytopathology, forestry, agriculture ecology and biocontrol.
This book describes the genetics, biochemistry, and epidemiology of
host-pathogen interactions in plant disease, especially as they
concern the breeding of crops for disease resistance. It analyzes a
wealth of information that has not previously been recorded in
other books or reviews. Some of it stems from basic surveys of
disease in the field. The analysis of these surveys not only
explains a great deal about host-pathogen interactions that was
heretofore obscure, but also indicates directions for future
research. Other data, from original papers, have now been
coordinated for the first time and organized in a way that suggests
new areas of research. The book contains more than fifty new tables
that integrate data and relate them to general principles of
host-pathogen interactions.
Proceedings of a Seminar in the EEC Programme of Coordinated Research on Energy in Agriculture held in Freising-Weihenstephan, FRG, November 4-6, 1986
Each plant-pathogen interaction involves a two-way molecular communication. On one hand, the pathogen perceives signals from the plant, secretes chemical arsenals to establish infection courts, and produces metabolites that disrupt structural integrity, alter cellular function, and circumvent host defenses. On the other hand, the plant senses the signals from the pathogen, reinforces its cell walls, and accumulates phytoalexins and pathogenesis-related proteins in an attempt to defend itself. The production of pathogenicity and virulence factors by the pathogen, the elicitation of defense mechanisms by the plant, and the dynamic interaction of the two are the focal points of this book. The book will be of interest to researchers and advanced undergraduate and graduate students in the areas of plant pathology, plant physiology, and plant biochemistry.
Sound formulation is a vital aspect of microbial products used to protect plants from pests and diseases and to improve plant performance. Formulation of Microbial Biopesticides is an in-depth treatment of this vitally important subject. Written by experts and carefully edited, this important title brings together a huge wealth of information for the first time within the covers of one book. The book is broadly divided into five sections, covering principles of formulation, organisms with peroral and contact modes of action, organisms with the power of search, and future trends. Each section contains comprehensive chapters written by internationally acknowledged experts in the areas covered; the book also includes three very useful appendices, cataloguing formulation additives, spray application criteria and terminology. This outstanding book is a vitally important reference work for anyone involved in the formulation of microbial biopesticides and should find a place on the shelves of agriculture and plant scientists, microbiologists and entomologists working in academic and commercial agrochemical situations, and in the libraries of all research establishments and companies where this exciting subject is researched, studied or taught.
P. T. N. SPENCER-PHILLIPS Co-ordinator, Downy Mildew Working Group of the International Society for Plant Pathology University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK Email: [email protected] It is a very great privilege to write the preface to the first specialist book on downy mildews since the major work edited by D. M. Spencer in 1981. The idea for the present publication arose from the Downy Mildew Workshop at the International Congress of Plant Pathology (ICPP) held in Edinburgh in August 1998. Our intention was to invite reviews on selected aspects of downy mildew biology from international authorities, and link these to a series of related short contributions reporting new data. No attempt has been made to cover the breadth of downy mildew research, but we hope that further topics will be included in future volumes, so that this becomes the first of a series following the five year ICPP cycle.
Plant-parasitic nematodes are among the most destructive plant pathogens, causing enormous losses to agronomic crops worldwide. This book provides an up-to-date review of research related to two of the most important nematode pests, root-knot and cyst nematodes. Chapters cover early plant-nematode interactions, identification of nematode proteins important in the establishment of nematode feeding sites, and classification of biochemical and signaling pathways significant in the development of specialized feeding sites in the host. The cellular and subcellular structures essential for the parasitic interaction are examined by light and electron microscopy. Modern techniques of gene expression analyses and genomic sequencing are poised to provide an even greater wealth of information to researchers, enabling them to develop and examine natural and manmade mechanisms of resistance to this important plant pest.
To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.
5 Table 1.1 Continued Species Hosts Families ~-------- ----- X. campestris pv. cassavae Manihot spp. Euphorbiaceae (Wiehe and Dowson 1953) Maraite and Weyns 1979 Cassia tora, C. occidentalis, Cicer Fabaceae X. campestris pv. cassiae arietinum, Pisum sativum (Kulkarni, Patel and Dhande 1951) Dye 1978 Musaceae X. campestris pv. celebensis Musa spp. (Gaumann 1923) Dye 1978 Apiaceae X. campestris pv. centellae Centella asiatica Basnyat and Kulkarni 1979 X. campestris pv. cerealis Agropyron spp., Avena spp., Poaceae Bromus spp., Hordeum spp., (Hagborg 1942) Dye 1978 Secale cereale, Triticum spp. Aegle marmelos, Atalantia spp., Rutaceae X. campestris pv. citri Balsamocitrus paniculata, (Hasse 1915) Dye 1978 Casimiroa edulis, Chaetospermum glutinosa, Citropsis schweinfurthii, Citrus spp. and hybrids, Clausena lansium, Eremocitrus glauca, Evodia spp., Ferollia sPP" Feroniella spp., Fortunella spp., Hesperethusa crellulata, Limonia spp., Melicope triphylla, Microcitrus spp., Murraya exotica, Paramigyna longipedunculata, Poncirus trifoliata and hybrids, Severina buxifolia, Toddalia asiatica, Zanthoxylum spp.
Jatropha curcas, or physic nut, is a small tree that, in tropical climates, produces fruits with seeds containing ~38% oil. The physic nut has the potential to be highly productive and is amenable to subculture in vitro and to genetic modification. It also displays remarkable diversity and is relatively easy to cross hybridize within the genus. Thanks to these promising features, J. curcas is emerging as a promising oil crop and is gaining commercial interest among the biofuel research communities. However, as a crop, physic nut has been an economic flop since 2012, because the species was not fully domesticated and the average productivity was less than 2 t/ha, which is below the threshold of profitability.^7 t/ha could be reached and it is contributing to new markets in some countries. As such, it is important fro research to focus on the physiology and selective breeding of Jatropha . This book provides a positive global update on Jatropha, a crop that has suffered despite its promising agronomic and economic potential. The editors have used their collective expertise in agronomy, botany, selective breeding, biotechnology, genomics and bioinformatics to seek out high-quality contributions that address the bottleneck features in order to improve the economic trajectory of physic nut breeding.
This collection features five peer-reviewed reviews on rust diseases of cereals. The first chapter provides an overview of the wheat rust pathogen lifecycle that has been critical to the design of effective disease management strategies and discusses recent integration of basic biological knowledge and genomic-led tools within an epidemiological framework. The second chapter introduces stripe rust and provides an overview of its decimation of crop yields worldwide. The chapter summarises recent advances in identifying stripe rust resistance genes in wheat as a means of controlling disease spread and limiting its economic damage. The third chapter addresses the need for more effective and sustainable control of rust pathogens affecting wheat and barley in the face of increasing regulatory measures against the use of conventional fungicides, as well as the spread of fungicide resistance. The fourth chapter provides an overview of the recent advances in controlling wheat rust, focussing on the role of pathogen and host genetics, host-pathogen interactions, epidemiology and management strategies. The final chapter considers the main rust pathogens affecting sorghum and details the different conditions in which they proliferate, their symptoms and impact on crop yields.
Advances in Trichoderma Biology for Agricultural Applications covers the beneficial properties of Trichoderma in enhancing global agricultural productivity. Trichoderma are biotechnologically significant fungi, being widely used both agriculturally and industrially. In many cases Trichoderma are also a potential drug source of clinical importance. In recent years, driven by advances in genetics and genomics, research on these fungi has opened new avenues for its various applications. This book covers i) Current state of Trichoderma taxonomy, and species identification, ii) Trichoderma and plant-pathogenic fungi interactions, iii) Trichoderma interactions with plants, including rhizosphere competence of Trichoderma, antagonistic potentials, plant growth promotion, and management of various abiotic stresses in plants, iv) Practical aspects of Trichoderma commercialization in agriculture, v) Biosynthesis of metal-based nanoparticles and its application, and vi) Negative impact of Trichoderma strains in the environments. Reading this book should kindle further discussions among researchers working in fungal biotechnology, microbiology, agriculture, environmental science, forestry, and other allied subjects and thus lead to a broader scope of Trichoderma-based products and technologies. The knowledge shared in this book should also provide a warning on the potential risks associated with Trichoderma. |
![]() ![]() You may like...
Ecophysiology of Pesticides - Interface…
Talat Parween, Sumira Jan
Paperback
R3,613
Discovery Miles 36 130
Microbial Endophytes - Prospects for…
Ajay Kumar, Vipin Kumar Singh
Paperback
R4,595
Discovery Miles 45 950
Fundamentals of Viroid Biology
Charith Raj Adkar-Purushothama, Teruo Sano, …
Paperback
|