![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant pathology & diseases
The aim of Plant Virology Protocols is to provide a source of infor- tion to guide the reader through the wide range of methods involved in gen- ating transgenic plants that are resistant to plant viruses. To this end, we have commissioned a wide-ranging list of chapters that will cover the methods required for: plant virus isolation; RNA extraction; cloning coat p- tein genes; introduction of the coat protein gene into the plant genome; and testing transgenic plants for resistance. The book then moves on to treatments of the mechanisms of resistance, the problems encountered with field testing, and key ethical issues surrounding transgenic technology. Although Plant Virology Protocols deals with the cloning and expression of the coat protein gene, the techniques described can be equally applied to other viral genes and nucleotide sequences, many of which have also been shown to afford protection when introduced into plants. The coat protein has, however, been the most widely applied, and as such has been selected to illustrate the techniques involved. Plant Virology Protocols has been divided into six major sections, c- taining 55 chapters in total.
Plant growth is of great economical and intellectual interest. Plants are the basis of our living environment, the production of our food and a myriad of plant-based natural products. Plant bio-mass is also becoming an important renewable energy resource. Agricultural plant cultivation and breeding programs have altered plant productivity and yield parameters extensively, yet the principles and underlying mechanisms are not well understood. At the cellular level, growth is the result of only two processes, cell division and cell expansion, but these two processes are controlled by intertwined signaling cascades and regulatory mechanisms forming complex regulatory networks. Ultimately this network is what plant scientists are trying to unravel. The sequencing of model and agronomically important plant genomes allows complete insight into the molecular components involved in each process. Methods to quantify the molecular changes, image growth processes and reconstruct growth regulatory networks are rapidly developing. This knowledge should help to elucidate key regulators and to design methods to engineer plant architecture and growth parameters for future human needs. This volume gives a comprehensive overview of what is known about plant growth regulation and growth restraints due to environmental conditions and should allow readers at all levels an entry into this exiting field of research.
Soils into which crop plants root and from which they obtain essential minerals and water contain huge arrays of microbes. Many have highly beneficial effects on crop growth and productivity, others are pathogens causing diseases and losses to yield and quality, a few microbes offer protection from these pathogenic forms and others have little or no effect. These intimate and often complex inter-relationships are being explored with increasing success providing exciting opportunities for increasing crop yields and quality in sustainable harmony with the populations of beneficial soil microbes and to the detriment of pathogens. This book explores current knowledge for each of these aspects of soil microbiology and indicates where future progress is most likely to aid in increasing crop productivity by means which are environmentally benign and beneficial.
Phytoplasma III is the last of three books in the series covering all the aspects of phytoplasma-associated diseases. Phytoplasmas are a major limiting factor in the quality and productivity of many ornamental, horticultural and economically important agriculture crops worldwide, and losses due to phytoplasma diseases have disastrous consequences for farming communities. As there is no effective cure for these diseases, management strategies focus-on exclusion, minimizing their spread by insect vectors and propagation materials, and developing host plant resistance. This book provides an update on genomics, effectors and pathogenicity factors toward a better understanding of phytoplasma-host metabolic interactions. It offers a comprehensive overview of biological, serological and molecular characterization of the phytoplasmas, including recently developed approaches in diagnostics, such as transcriptomics studies, which have paved the way for analyzing the gene expression pattern in phytoplasmas on infection and revealed the up-regulation of genes associated with hormonal response, transcription factors, and signaling genes. Although phytoplasmas remain the most poorly characterized pathogens, recent studies have identified virulence factors that induce typical disease symptoms and have characterized the unique reductive evolution of the genome. Reviewing the advances in cultivation in axenic media together with the perspectives for future research to reduce the global incidence of these pathogens and the associated agricultural losses, the book is a valuable resource for plant pathologists, researchers in agriculture and PhD students.
This book describes how genomics has revolutionized our understanding of agriculturally important plant-associated fungi and oomycetes. It illustrates some fundamental discoveries about these eukaryotic microbes with regard to the overall structure of their genomes, their lifestyles and the molecular mechanisms that form the basis of their interactions with plants. Genomics has provided new insights into fungal lifestyles and led to practical advances in plant breeding and crop protection, such as predictions about the spread and evolution of new pathogens.This volume focuses on fungi and oomycetes that are typical dicot plant pathogens and includes: Sclerotinia sclerotiorum, Botrytis cinerea, Alternaria sp.,Verticillium alfalfae and Verticillium dahliae, Fusarium oxysporum, Phytophthora capsici, Phytophthora sojae, Phytophthora ramorum, Phytophthora infestans, Hyaloperonospora arabidopsidis.
Microbial plant pathogens causing qualitative and quantitative losses in all corps are present not only in the infected plants, but also in the environmental comprising of soil, water and air. The vectors present in the environment spread the microbial pathogens to short and/or long distances. Detection of microbial pathogens rapidly and reliably by employing suitable sensitive applicable for different ecosystems. The pathogens have to be identified precisely and differentiated and quantified to plan appropriate short- and long-term strategies to contain the incidence and spread of diseases induced by them. This book aims to present all relevant and latest information on the detection techniques based on the biological, biochemical, immunological and nucleic acid characteristics of microbial pathogens presents in the host plants, as well as in the natural substrates that support the survival and perpetuation of the pathogens.
This book is a first attempt to link well-known plant resistance phenomena with emerging concepts in molecular biology. Resistance phenomena such as the local lesion response, induced resistance, "green islands" and resistance in various crop plants are linked with new information on gene-silencing mechanisms, gene silencing suppressors, movement proteins and plasmodesmatal gating, downstream signalling components, and more.
This book presents a collection of papers that give a comprehensive description of the major areas of research on the interactions between plants and their pathogens. State-of-the-art knowledge about research on microbial avirulence genes and plant resistance genes, about pathogenicity factors and signals for establishment of infection, about elicitors and intermediates in the signalling pathway, and about the genes involved in plant responses to pathogens and environmental stress is reviewed. The different topics covered show that modern tools of plant cellular and molecular biology are now available to investigate very significant models of plant-pathogen interactions and to identify the molecular determinants of the two partners that trigger defence responses, the signals involved and the mechanism of their transduction, the spatial and temporal regulation of defence gene expression in relation to the spread or localization of the pathogen. The first trials to exploit these results for enhancing plant resistance and crop field by biotechnology are presented. The book is a main reference source for research scientists and advanced students.
Thanks to the application of new technologies such as whole-genome sequencing, analysis of transcriptome and proteome of insect pest to agriculture, great progress has been made in understanding the life style, reproduction, evolution and nuisance to crops caused by insect pests such as aphids, planthoppers, and whiteflies. We believe that time has come to summarize progress and to have a glance over the horizon. In this Book experts in the field discuss novel means to increase the different kinds of resistances of plants to better limit the effects of pest, to understand and disturb the hormonal regulation of embryogenesis, molting, metamorphosis and reproduction, to determine the function of insect genes in diverse processes such as metabolism, interaction with plants, virus transmission, development, and adaptation to a changing environment. The knowledge presented here is discussed with the aim of further improving control strategies of insect pestsman";mso-hansi-theme-font:minor-bidi;mso-bidi-theme-font:minor-bidi; mso-ansi-language:NL;mso-fareast-language:NL;mso-bidi-language:AR-SA">.
This book is a biography of a scientist who pioneered the development of plant pathology in Australia in the 19th and early 20th century, and was internationally acclaimed. After 20 years as a plant pathologist, he was asked to find the cause and cure of a serious physiological disorder of apples. While the cause eluded him, and everyone else for another 60 years, he again won international gratitude for the improvements he brought to the apple industry. However because he did not find the cause, he was deemed to have failed by his political masters who were malignantly influenced by a jealous rival. The discovery in 2012-2013 of government files covering the period of the bitter pit investigation, from 1911 to 1916; reveal the extent of the unjust criticism of McAlpine while history has vindicated the management recommendations made to reduce bitter-pit losses. The focus on bitter-pit management late in McAlpine's Career also meant that those who value his memory have been less aware of the remarkable achievements of McAlpine in the time before he left Great Britain - the brilliance of his teaching and drawing skills -featured in the early teaching texts for botany and zoology (the latter with his brother) which are now accessible on-line. The objective of this book is to demonstrate that (i) the view that McAlpine had failed in his quest was wrong and seriously unjust (ii) McAlpine achievements extend beyond plant pathology and include significant contributions to the 19th century teaching of botany and zoology, contributions which reinforce the adage - a picture is worth a 1,000 words.
The sheath nematodes belonging to the superfamily Hemicycliophoroidea are unique amongst all plant parasitic nematodes known to man due to the presence of an extra cuticular covering or sheath over the inner cuticle and body of all juvenile and adult life stages. These plant-parasitic nematodes include species of agricultural and quarantine importance. In Systematics of the Sheath Nematodes of the Superfamily Hemicycliophoroidea John Chitambar and Sergei Subbotin provide a detailed review of the taxonomy and diagnosis of the superfamily, its member genera and 153 related species based on their morphological and molecular analyses, as well as a further understanding of the relationships within the superfamily using molecular phylogenetics. In addition, Chitambar and Subbotin also give detailed information on the global distribution, biology, host-parasite relationships and ecology of sheath nematodes.
Plant disease epidemiology is a dynamic science that forms an essential part of the study of plant pathology. This book brings together a team of 35 international experts. Each chapter deals with an essential component of the subject and allows the reader to fully understand how each exerts its influence on the progress of pathogen populations in plant populations over a defined time scale. Since the first edition of the text was published in 1998, many new developments have occurred in the subjects covered, particularly molecular diagnostics, modelling, fungicide resistance and information technology. The second edition of the book is a comprehensive text on all aspects of plant disease epidemiology that should serve as an invaluable reference work for those involved in this fascinating science of crop plants.
Insect and disease issues are often specific to the Mediterranean forest systems rather than shared with the temperate forests. In addition to the specific native insects and diseases, the forests are subject to the invasion of exotic species. The forests are also at risk from high degrees of human activity, including changing patterns of forest fires, land management activities, intensive plantation forestry using introduced timber species from other Mediterranean climate zones, and atmospheric deposition. Combined with elements of global climate change that may disproportionately affect Mediterranean climate systems, this creates a number of significant management issues that are unique to the Mediterranean forests. It is our goal that the information contained in this volume will contribute to understanding the unique aspects of Mediterranean forest systems and to protecting these critical resources.
The fifth and last Volume of this IPMD series reviews, in a multi-disciplinary approach, recent achievements in crop protection and integrated management of arthropod pests. The volume is organized in a first Section covering IPM in citrus productions, a Second one dealing with advacements in the integratioon of management technologies and a last Section covering mites and their biological control agents. As for the previous volumes, we attempted to provide an informative coverage for a broad range of agricultural systems and situations. The chapters are mainly organized and centered on crops, with a particular emphasis on citrus. This is one of the main crops in which biological control and IPM approaches were tested successfully, and the experience gained herein may indeed result helpful for IMP efforts deployed worldwide on other crops and/or cropping systems. Chapters in Section 2 review the integration of insect and disease management options in pecan crops, the application of remote sensing technologies, the status of knowledge about plant defense compounds and their potentials. For IPM of invasive species, an update is provided on the experience gained on the Red Palm Weevil (RPW) in Egypt. Long-term technological solutions for IPM in forests and park areas through aerial treatments with Bt spores concludes this Section. Finally, in Section 3, updated reviews about biological control agents of mites are provided.
This is the first comprehensive and up-to-date reference on the science, mechanism, methodology, and application of allelopathy. The objective of this practical reference is to report on the latest advances by inviting leading scientists to contribute in specific fields. The volume is organized under three major subsections: History of allelopathy, Allelochemicals, allelopathic mechanisms, and bioassays, and Application of allelopathy in agriculture and forestry.
Megaplasmids are extrachromosomal genetic elements in the size range of 100 kb and larger. They are found in physiologically and phylogenetically diverse groups of bacteria and archaea. By definition, megaplasmids are not essential for the viability of their hosts under all growth conditions, but paradoxically many megaplasmids carry the genetic information for the defining and characteristic traits of the organism in which they reside. Microbial Megaplasmids reviews our knowledge of the extensively studied representatives, such as the catabolic plasmids of the pseudomonads, the rhizobial Sym plasmids, the Ti plasmids of the genus Agrobacterium and the giant enterobacterial virulence plasmids. It also presents snapshots of more recently discovered megaplasmids. The contribution of megaplasmids to the biology of their hosts is described, highlighting the interactions between megaplasmid and chromosomal genes.
Mycorrhizal fungi are microbial engines which improve plant vigor and soil quality. They play a crucial role in plant nutrient uptake, water relations, ecosystem establishment, plant diversity, and the productivity of plants. Scientific research involves multidisciplinary approaches to understand the adaptation of mycorrhizae to the rhizosphere, mechanism of root colonization, effect on plant physiology and growth, biofertilization, plant resistance and biocontrol of plant pathogens. This book discusses and goes into detail on a number of topics: the molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants; the role of AM fungi in disease protection, alleviation of soil stresses and increasing grain production; interactions of AM fungi and beneficial saprophytic mycoflora in terms of plant growth promotion; the role of AM fungi in the restoration of native ecosystems; indirect contributions of AM fungi and soil aggregation to plant growth and mycorrhizosphere effect of multitrophic interaction; the mechanisms by which mycorrhizas change a disturbed ecosystem into productive land; the importance of reinstallation of mycorrhizal systems in the rhizosphere is emphasized and their impact on landscape regeneration, and in bioremediation of contaminated soils; Ectomycorrhizae (ECM) and their importance in forest ecosystems and associations of ECM in tropical rain forests function to maintain tropical monodominance; in vitro mycorrhization of micro-propagated plants, and visualizing and quantifying endorhizal fungi; the use of mycorrhizae, mainly AM and ECM, for sustainable agriculture and forestry.
This book provides a comprehensive discussion on plant responses in hyperarid regions of Egypt, China, Mexico, and Pakistan. It describes their location, physiographic features, accidental vegetation along two transects, endangered vegetation species, human impact, and variety of plant types (e.g. climbing, succulent, and parasitic). Studies on biotic and abiotic interactions, plant biodiversity, and soil-plant relationships are also covered. Covering a wide range of plant conditions and adaptations, this book analyzes what happens when plants must endure very high temperatures and aridity. Plants have adapted by evolving their physical structure to store and conserve water. Examples are the absence of leaves which reduces transpiration and the growth of extremely long roots, allowing them to acquire moisture at, or near the water table. Plants in hyperarid habitats have also made behavioral adaptations in order to survive by synchronizing with the seasons of greatest moisture and/or coolest temperatures. For example, desert perennials remain dormant during dry periods of the year, then spring to life when water becomes available. The book includes many color illustrations, and has extensive and up-to-date references for further reading.
This book presents advanced ecological techniques for crop cultivation and the chapters are arranged into four sections, namely general aspects, weeds, fungi, worms and microbes. Biocontrol is an ecological method of controlling pests such as insects, mites, weeds and plant diseases using other organisms. This practice has been used for centuries. Biocontrol relies on predation, parasitism, herbivory, or other natural mechanisms. Natural enemies of insect pests, also known as biological control agents, include predators, parasitoids, pathogens, and competitors.
Bemisia tabaci (Gennedius) has distinguished itself from the more than 1,000 whitefly species in the world by its adaptability, persistence and potential to damage a wide range of agricultural and horticultural crops in all six of the world s inhabited continents. B. tabaci inflicts plant damage through direct feeding, inducement of plant disorders, vectoring of plant viruses and excretion of honeydew. This book collates multiple aspects of the pest ranging from basic to applied science and molecular to landscape levels of investigation. Experts in multiple disciplines provide broad, but detailed summaries and discussion of taxonomy, genetics, anatomy, morphology, physiology, behavior, ecology, symbiotic relationships, virus vector associations and various tactics for integrated management of this pest insect. The book is focused primarily on progress during the last 10-15 years and is directed at workers in the field as well as the informed professional who may not necessarily specialize in whitefly research. The book is unique in providing broad coverage in relatively few chapters by recognized experts that highlight the state-of-the-art in our understanding of this fascinating but troublesome cosmopolitan pest."
This book will awaken the interest of breeders, phytopathologists, environmentalists, extension services, plant virologists, entomologists and molecular biologists. It deals both with the epidemiological aspects of the disease and with integrated pest management in the field. It discusses the efforts aimed at breeding tomato plants resistant to the virus (using classical breeding, marker-assisted breeding and genetic engineering). It summarizes the techniques used for diagnosis, eradication and certification and emphasizes the problems inherent to the control of the virus insect vector, the use of pesticides and the resistance acquired by the insects, the appearance of new whitefly biotypes with previously unknown characteristics, and the complex relations between virus, vector and plant host.
The Garden and Greenhouse Flowers manual is a reference manual on diseases which attack garden and greenhouse flowers. The manual identifies various types of diseases which are known to invade these plants located throughout North, Central, and South America.The recordings include diseases caused by fungi, bacteria, viruses, viroids, phytoplasmas, and nematodes. Causal disease agents are described and illustrated in some cases and diseases and disease control measures are also discussed. A manual such as this is never finished since new reports of diseases are continuously reported. |
![]() ![]() You may like...
Child Welfare Training and Practice - An…
Cynthia C. Baker, Rebecca L. Hegar, …
Hardcover
R2,189
Discovery Miles 21 890
|