![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant pathology & diseases
The papers contained in this book were presented at a NATO Advanced Research Workshop (ARW) held at Cape Sounion, Athens, Greece, 19-24 May, 1991. The twenty-eight more comprehensive papers represent the key subjects of the ARW covered by invited speakers. The thirty-four short papers pre sented in a research format are contributions of those invited to participate in the ARW. There was a total of 70 participants from 21 countries. The objectives of the ARW were as follows: to review current knowledge of biological control of plant diseases and plant parasitic nematodes, with emphasis on mechanisms at the molecular, cellular, organismal, and ecosystem level; to examine and expand on current concepts and synthesize new concepts; to identify and prioritize limitations in the use of biological control for plant diseases and nematodes and the scientific research needed to overcome these limitations; and to develop strategies for biological control through management of resident agents or introduction of natural or modified agents."
Diversity, Distribution, and Current Status is the first volume in a three-volume series dedicated to the analysis of this important group of plant pathogens across Asia with a particular focus on geographic distribution. This book offers updated data on the most prevalent phytoplasma diseases specific to each region. Phytoplasmas are emerging plant pathogens all around the world, causing significant economic losses to crops, as well as affecting international trade. The chapters in Volume 1 look closely at different countries and regions across Asia, providing data on country-wide distribution, phytoplasma groups, insect vectors and transmission. The Phytoplama Diseases in Asian Countries series will be an essential read for university students, researchers and agriculturalists interested in Plant Pathology. Volume 1 will be of particular interest to those needing the latest data on the distribution and transmission rates specific to the various regions of Asia.
Global industrial growth has resulted in numerous pollutants being introduced into the environment. It has additionally caused decreased water availability for agricultural activity in developing countries, which, in turn, has compelled farmers to use wastewater irrigation. In advanced agricultural systems, farmers are adapting various strategies to achieve a higher yield and thus sustain crop productivity. Consequent to the introduction of contaminants in the environment, soil pollutants have become a critical issue. Selection of disease-resistant, high-yielding crop varieties, and extensive fertilizer applications are quite common among farming communities. This book provides insight into environmental pollutants with special reference to their interference with plant nutrition. It additionally discusses the physiological aspects of plant nutrition. This book enhances current knowledge of the effects of pollutants on plant growth and physiology.
This book covers the important diseases and pests of potato which are of global significance. The pests and diseases in potato lead to huge economic losses by reducing the yield and quality of the produce. This book describes major pests and diseases in detail with particular emphasis on the latest developments with respect to their biology, ecology, and management. It highlights the importance of virus infection for seed potato production and diagnostic symptoms, along with management guidelines. The book brings forth tips for judicious use of pesticides for sustainable potato production and management of pesticide resistance. Use of novel approaches such as RNA interference, genome editing, and other genomic resources for drug designing in diseases and pest management is also emphasized in the book. This book is of interest to teachers, researchers, extension workers, potato growers, and policy makers. Also, the book serves as additional reading material for undergraduate and graduate students of agriculture and plant pathology. National and international agricultural scientists and policy makers will also find this to be a useful read.
This volume focuses on recent advances in the biochemical and molecular analysis of different families of phospholipases in plants and their roles in signaling plant growth, development and responses to abiotic and biotic cues. The hydrolysis of membrane lipids by phospholipases produces different classes of lipid mediators, including phosphatidic acid, diacylglycerol, lysophospholipids, free fatty acids and oxylipins. Phospholipases are grouped into different families and subfamilies according to their site of hydrolysis, substrate usage and sequence similarities. Activating one or more of these enzymes often constitutes an early, critical step in many regulatory processes, such as signal transduction, vesicular trafficking, secretion and cytoskeletal rearrangements. Lipid-based signaling plays pivotal roles in plant stress responses, cell size, shape, growth, apoptosis, proliferation, and reproduction.
This open access book will provide an introduction to forest entomology, the principles and techniques of forest insect pest management, the different forest insect guilds/feeding groups, and relevant forest insect pest management case studies. In addition to covering 30% of the earth, forest ecosystems provide numerous timber and non-timber products that affect our daily lives and recreational opportunities, habitat for diverse animal communities, watershed protection, play critical roles in the water cycle, and mitigate soil erosion and global warming. In addition to being the most abundant organisms in forest ecosystems, insects perform numerous functions in forests, many of which are beneficial and critical to forest health. Conversely, some insects damage and/or kill trees and reduce the capacity of forests to provide desired ecosystem services. The target audience of this book is upper-level undergraduate and graduate students and professionals interested in forest health and entomology.
Invasive species have inspired concern for many reasons, including economic and environmental impacts in specific jurisdictions within particular countries. However, it is apparent that for some invasive plant species, political borders offer only weak barriers because these species have succeeded in invading many countries, emerging as threats at a global level. With this level of threat, a number of books on invasive plants and invasive species in general have been published in recent years, but none explicitly provides "global" coverage, perhaps because it is only recently that the full geographical, economic and environmental implications of widespread spread and adaptive nature of these particular invasive plants have been recognized. We plan to make this volume unique by profiling plant invasions in explicitly geographical contexts; on the world continents (Chapters 5-11), as well as islands (Chapter 12) and mountains (Chapter 13). This global approach is supported by an overview of invasion biology and recent advances (Chapter 1) and how different communities differ in invasibility (Chapter 2). Global factors influencing invasion are introduced in Chapter 3 (globalized trade) and Chapter 4 (climate change). Key species are profiled through geographic treatments, continent by continent (Chapters 5-11), and for islands (Chapter 12) and mountains (Chapter 13). The impact of invasive plants is highlighted in Chapter 14, both in biotic and economic terms, partly to counter the tendency for the young field of invasion biology to rely too much on anecdotal evidence. This chapters is also designed to bring home the message that these are serious problems that must be dealt with, as covered in the subsequent chapters. The book concludes with three chapters casting light on solutions to the many problems described in the rest of the volume. Chapter 15 features new, innovative technologies that are being developed to monitor and manage invasive plants, and Chapter 16 presents comprehensive strategies for public education and implementation of management on local and global scales. Chapter 17 describes different future scenarios depending on current trends in plant invasion and its management, just as climate change predictions employ various scenarios to project the future. The future is very much up to us, as humanity grapples with the question of how best to strategically meet the problems of global invasive plant problems that we ourselves have created that is further challenged by a changing climate. We are confident that this book will be of interest to invasion biologists, resource managers, and the legion of others who must deal with these invasive plants across the globe on a daily basis.
This volume provides a collection of molecular protocols detailing the most common and modern techniques on fusarium wilt. Chapters guide readers through methods on initial isolation, molecular-based identification, genome characterization, generation of mutants, and characterization of interactions with other organisms including host plants. Written in the format of the highly successful Methods in Molecular Biology series, each chapter includes an introduction to the topic, lists necessary materials and reagents, includes tips on troubleshooting and known pitfalls, and step-by-step, readily reproducible protocols. Authoritative and cutting-edge, Fusarium wilt: Methods and Protocols aims to be a valuable resource for mycologists, plant pathologists, microbiologists, geneticists, and other scientists that have an interest in members of the Fusarium oxysporum species complex or closely related fungi.
Proceedings of a Seminar in the EEC Programme of Coordinated Research on Energy in Agriculture held in Freising-Weihenstephan, FRG, November 4-6, 1986
Each plant-pathogen interaction involves a two-way molecular communication. On one hand, the pathogen perceives signals from the plant, secretes chemical arsenals to establish infection courts, and produces metabolites that disrupt structural integrity, alter cellular function, and circumvent host defenses. On the other hand, the plant senses the signals from the pathogen, reinforces its cell walls, and accumulates phytoalexins and pathogenesis-related proteins in an attempt to defend itself. The production of pathogenicity and virulence factors by the pathogen, the elicitation of defense mechanisms by the plant, and the dynamic interaction of the two are the focal points of this book. The book will be of interest to researchers and advanced undergraduate and graduate students in the areas of plant pathology, plant physiology, and plant biochemistry.
P. T. N. SPENCER-PHILLIPS Co-ordinator, Downy Mildew Working Group of the International Society for Plant Pathology University of the West of England, Coldharbour Lane, Bristol BS16 1QY, UK Email: [email protected] It is a very great privilege to write the preface to the first specialist book on downy mildews since the major work edited by D. M. Spencer in 1981. The idea for the present publication arose from the Downy Mildew Workshop at the International Congress of Plant Pathology (ICPP) held in Edinburgh in August 1998. Our intention was to invite reviews on selected aspects of downy mildew biology from international authorities, and link these to a series of related short contributions reporting new data. No attempt has been made to cover the breadth of downy mildew research, but we hope that further topics will be included in future volumes, so that this becomes the first of a series following the five year ICPP cycle.
Sound formulation is a vital aspect of microbial products used to protect plants from pests and diseases and to improve plant performance. Formulation of Microbial Biopesticides is an in-depth treatment of this vitally important subject. Written by experts and carefully edited, this important title brings together a huge wealth of information for the first time within the covers of one book. The book is broadly divided into five sections, covering principles of formulation, organisms with peroral and contact modes of action, organisms with the power of search, and future trends. Each section contains comprehensive chapters written by internationally acknowledged experts in the areas covered; the book also includes three very useful appendices, cataloguing formulation additives, spray application criteria and terminology. This outstanding book is a vitally important reference work for anyone involved in the formulation of microbial biopesticides and should find a place on the shelves of agriculture and plant scientists, microbiologists and entomologists working in academic and commercial agrochemical situations, and in the libraries of all research establishments and companies where this exciting subject is researched, studied or taught.
Of the global population of more than 7 billion people, some 800 million do not have enough to eat today. By 2050, the population is expected to exceed 9 billion. It has been estimated that some 15% of food production is lost to plant diseases; in developing countries losses may be much higher. Historically, plant diseases have had catastrophic impact on food production. For example: potato blight caused the Irish famine in 1845; brown spot of rice caused the Great Bengal Famine of 1943; southern corn leaf blight caused a devastating epidemic on the US corn crop in 1970. Food security is threatened by an ongoing sequence of plant diseases, some persistent for decades or centuries, others more opportunistic. Wheat blast and banana xanthomonas wilt are two contrasting examples of many that currently threaten food production. Other emerging diseases will follow. The proposed title aims to provide a synthesis of expert knowledge to address this central challenge to food security for the 21st century. Chapters [5] and [11] are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
To cope with the increasing problems created by agrochemicals such as plant fertilizers, pesticides and other plant protection agents, biological alternatives have been developed over the past years. These include biopesticides, such as bacteria for the control of plant diseases, and biofertilizer to improve crop productivity and quality. Especially plant growth promoting rhizobacteria (PGPR) are as effective as pure chemicals in terms of plant growth enhancement and disease control, in addition to their ability to manage abiotic and other stresses in plants. The various facets of these groups of bacteria are treated in this Microbiology Monograph, with emphasis on their emergence in agriculture. Further topics are Bacillus species that excrete peptides and lipopeptides with antifungal, antibacterial and surfactant activity, plant-bacteria-environment interactions, mineral-nutrient exchange, nitrogen assimilation, biofilm formation and cold-tolerant microorganisms.
Volume 8 in the series, appearing in two parts, A and B, deals with the systematics of cyst nematodes of the subfamily Heteroderinae. Cyst nematodes are important pathogens causing extensive damage and significant yield loss to many crops in both temperate and tropical regions. Part A presents summarised information on various aspects of morphology, biology, ecology, pathology, biogeography, control measures and diagnostics of these nematodes. Molecular diagnostic tables and comprehensive tabular and dichotomous keys for species identification, together with descriptions of protocols for extraction, light and electron microscopy studies, and molecular diagnostics are also included. The taxonomic section of part A provides diagnoses for six genera, "viz.", "Globodera," "Punctodera," "Cactodera," "Dolichodera," "Betulodera" and "Paradolichodera," and includes descriptions and morphometrics of 30 valid species. The work is illustrated by 101 drawings and photos. The genus "Heterodera" is mainly covered in part B, complete descriptions and morphometrics of the 80 known valid species being provided and the species illustrated by 159 line drawings and photos. Identification of the species using morphological and molecular techniques is also covered. Each part includes an extensive bibliography.
Plant-parasitic nematodes are among the most destructive plant pathogens, causing enormous losses to agronomic crops worldwide. This book provides an up-to-date review of research related to two of the most important nematode pests, root-knot and cyst nematodes. Chapters cover early plant-nematode interactions, identification of nematode proteins important in the establishment of nematode feeding sites, and classification of biochemical and signaling pathways significant in the development of specialized feeding sites in the host. The cellular and subcellular structures essential for the parasitic interaction are examined by light and electron microscopy. Modern techniques of gene expression analyses and genomic sequencing are poised to provide an even greater wealth of information to researchers, enabling them to develop and examine natural and manmade mechanisms of resistance to this important plant pest.
This contributed volume aims at bringing together all the genetic engineering tools for managing various types of crop pests. The main focus of this book is to explore the application of these tools in pest management. Major pest groups covered in this book are insects, mites and nematodes.The first section covers all major genetic tools and molecular approaches. The second section deals with genetic tools for of beneficial containing three chapters involving honey bees, silkworms and natural enemies. Next section deals with genetic interactions against pests in diverse geographical regions with special focus on Africa, Vietnam and Sri Lanka. Sections four and five addresses diverse aspects as management of pests, genetic behavior, gene expression, plasticity, pathways and interactions and options for mitigation of pests.It serves as a useful resource for professionals in the fields of entomology, agronomy, horticulture, ecology, and environmental sciences, as well as to agricultural producers and plant biotechnologists.
This book presents a timely review of the latest advances in rhizosphere biology, which have been facilitated by the application of omics tools. It includes chapters on the use of various omics tools in rhizosphere biology, focusing on understanding plant and soil microbe interactions. The role of proteomics and metagenomics in research on symbiotic association is also discussed in detail. The book also includes chapters on the use of omics tools for the isolation of functional biomolecules from rhizospheric microorganisms. The book's respective sections describe and provide detailed information on important omics tools, such as genomics, transcriptomics, proteomics, metabolomics and meta-epigenomics. In turn, the book promotes and describes the combined use of plant biology, microbial ecology, and soil sciences to design new research strategies and innovative methods in soil biology. Lastly, it highlights the considerable potential of the rhizosphere in terms of crop productivity, bioremediation, ecological engineering, plant nutrition and health, as well as plant adaptation to stress conditions. This book offers both a practical guide and reference source for all scientists working in soil biology, plant pathology, etc. It will also benefit students studying soil microbiology, and researchers studying rhizosphere structure.
5 Table 1.1 Continued Species Hosts Families ~-------- ----- X. campestris pv. cassavae Manihot spp. Euphorbiaceae (Wiehe and Dowson 1953) Maraite and Weyns 1979 Cassia tora, C. occidentalis, Cicer Fabaceae X. campestris pv. cassiae arietinum, Pisum sativum (Kulkarni, Patel and Dhande 1951) Dye 1978 Musaceae X. campestris pv. celebensis Musa spp. (Gaumann 1923) Dye 1978 Apiaceae X. campestris pv. centellae Centella asiatica Basnyat and Kulkarni 1979 X. campestris pv. cerealis Agropyron spp., Avena spp., Poaceae Bromus spp., Hordeum spp., (Hagborg 1942) Dye 1978 Secale cereale, Triticum spp. Aegle marmelos, Atalantia spp., Rutaceae X. campestris pv. citri Balsamocitrus paniculata, (Hasse 1915) Dye 1978 Casimiroa edulis, Chaetospermum glutinosa, Citropsis schweinfurthii, Citrus spp. and hybrids, Clausena lansium, Eremocitrus glauca, Evodia spp., Ferollia sPP" Feroniella spp., Fortunella spp., Hesperethusa crellulata, Limonia spp., Melicope triphylla, Microcitrus spp., Murraya exotica, Paramigyna longipedunculata, Poncirus trifoliata and hybrids, Severina buxifolia, Toddalia asiatica, Zanthoxylum spp.
Abiotic and biotic stress factors, including drought, salinity, waterlog, temperature extremes, mineral nutrients, heavy metals, plant diseases, nematodes, viruses, and diseases, adversely affect growth as well as yield of crop plants worldwide. Plant growth-promoting microorganisms (PGPM) are receiving increasing attention from agronomists and environmentalists as candidates to develop an effective, eco-friendly, and sustainable alternative to conventional agricultural (e.g., chemical fertilizers and pesticide) and remediation (e.g., chelators-enhanced phytoremediation) methods employed to deal with climate change-induced stresses. Recent studies have shown that plant growth-promoting bacteria (PGPB), rhizobia, arbuscular mycorrhizal fungi (AMF), cyanobacteria have great potentials in the management of various agricultural and environmental problems. This book provides current research of biofertilizers and the role of microorganisms in plant health, with specific emphasis on the mitigating strategies to combat plant stresses.
Selenium plays a significant role in preventing certain types of cancer and cardiovascular diseases. The level of Selenium in the human body depends on its concentration in food. In turn, the content in vegetable crops is a function of the soil-plant system. There are many countries in the world with low Selenium content in the soil. The average daily human intake is thus limited through food chain. Analysis of Selenium status suggests that fortification of the soil substrate with Sodium Selenate, and foliar application to agricultural crops are both effective means of Selenium enrichment. Our intention for this publication is to present the possibilities of augmenting Selenium content by biofortification of soils and plants through differentiated nutrition. In the first part of the monograph, the results of Selenium supplementation in model vegetation experiments are presented. The next part of the monograph presents the results of foliar supplementation of Selenium in field conditions. This book is an outstanding reference source for plant breeders and researchers engaged in biofortification of horticulture crops. It is also beneficial to agricultural companies and other stakeholders.
This collection features four peer-reviewed literature reviews discussing fungal diseases of apples. The first chapter discusses the main pre- and postharvest pathogens affecting apple production. The chapter also reviews recent advances in biological, chemical and cultural forms of disease management to optimise production, maintain fruit quality and enhance sustainability. The second chapter reviews the epidemiology of apple scab. The chapter explores the role of host resistance, as well as techniques to manage apple scab and minimise crop losses, including fungicide application and the use of biocontrol agents. The third chapter reviews preharvest fungal and bacterial diseases as well as viruses of tree fruit. It looks at advances in technology for pathogen detection as well as methods of integrated disease management, including biological and cultural control. The final chapter reviews the development of apple varieties that are resistant to a number of important diseases, including apple scab, powdery mildew, fire blight, nectria canker and Marssonina apple blotch. The chapter also considers the use of DNA-based selection techniques for developing resistance and the mechanisms on which resistance depends.
Jatropha curcas, or physic nut, is a small tree that, in tropical climates, produces fruits with seeds containing ~38% oil. The physic nut has the potential to be highly productive and is amenable to subculture in vitro and to genetic modification. It also displays remarkable diversity and is relatively easy to cross hybridize within the genus. Thanks to these promising features, J. curcas is emerging as a promising oil crop and is gaining commercial interest among the biofuel research communities. However, as a crop, physic nut has been an economic flop since 2012, because the species was not fully domesticated and the average productivity was less than 2 t/ha, which is below the threshold of profitability.^7 t/ha could be reached and it is contributing to new markets in some countries. As such, it is important fro research to focus on the physiology and selective breeding of Jatropha . This book provides a positive global update on Jatropha, a crop that has suffered despite its promising agronomic and economic potential. The editors have used their collective expertise in agronomy, botany, selective breeding, biotechnology, genomics and bioinformatics to seek out high-quality contributions that address the bottleneck features in order to improve the economic trajectory of physic nut breeding.
With advances in agro-technology, cucurbits are now being grown throughout the year. However, they are prone to biotic and abiotic stresses resulting in significant yield loss. Sustainable management of such stresses is a complex issue in the intensive cultivation of cucurbits involving high levels of fertilization and irrigation. Further, under the changing climatic conditions, pest scenarios vary constantly, with invasive alien species of pests becoming more common as a result of free trade and frequent international travel. As such, agrochemicals are being used as powerful weapons to combat the increasing number of pests and diseases. Lack of proper crop management technologies, inaccurate diagnosis, and indiscriminate and excessive use of pesticides are major causes of pesticide resistance and resurgence, environmental pollution, and hazards to the non-target biota. This comprehensive book provides essential insights into the management of biotic and abiotic stresses in cucurbit cultivation and re-evaluating the role of agrochemicals, and gathers information on insect pests, mites, nematodes, diseases and weeds, as well as on their sustainable management from scattered sources. Written in language that is easy to understand and including high-quality photographs, it is a valuable resource for students, researchers, plant protection specialists, extension workers, and growers. |
![]() ![]() You may like...
The Rebel Witch - The Crimson Moth: Book…
Kristen Ciccarelli
Paperback
|