![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Biology, life sciences > Botany & plant sciences > Plant pathology & diseases
A state-of-the-art overview of the intricate functional virus/host relationships that allow a virus or viroid to move cell-to-cell and systemically through the plant, as well as from plant to plant, and, thus, to spread infection. The book also illustrates the mechanisms by which viruses overcome plant defence responses, such as RNA silencing. Arabidopsis is used as an illustration of a plant host eminently suitable for genetic approaches to identify novel players in plant/virus interactions.
Actin is an extremely abundant protein that comprises a dynamic polymeric network present in all eukaryotic cells, known as the actin cytoskeleton. The structure and function of the actin cytoskeleton, which is modulated by a plethora of actin-binding proteins, performs a diverse range of cellular roles. Well-documented functions for actin include: providing the molecular tracks for cytoplasmic streaming and organelle movements; formation of tethers that guide the cell plate to the division site during cytokinesis; creation of honeycomb-like arrays that enmesh and immobilize plastids in unique subcellular patterns; supporting the vesicle traffic and cytoplasmic organization essential for the directional secretory mechanism that underpins tip growth of certain cells; and coordinating the elaborate cytoplasmic responses to extra- and intracellular signals. The previous two decades have witnessed an immense accumulation of data relating to the cellular, biochemical, and molecular aspects of all these fundamental cellular processes. This prompted the editors to put together a diverse collection of topics, contributed by established international experts, related to the plant actin cytoskeleton. Because the actin cytoskeleton impinges on a multitude of processes critical for plant growth and development, as well as for responses to the environment, the book will be invaluable to any researcher, from the advanced undergraduate to the senior investigator, who is interested in these areas of plant cell biology.
Mycotoxins continue to be a very serious threat to human health and a major concern for those entrusted with regulatingthesafetyoffoodandfoodproducts.Infectionofcerealsandothercrops, notablegrapevine, byFusarium, Aspergillus andPenicillium are a world-wide problem and recent epidemics in Europe, the USA and Canada have focused attention on this problem. A previous Special Issue of the European Journal of Plant Pathology (108 (7) 2003) was concerned with the nature of these toxins and the fungi that can produce them. The aim of this publication is to review the environmental factors that in?uence the success of these fungi as pathogens and as organisms affecting stored products, and to discuss how these factors can also in?uence the amounts of toxin that accumulate. These reviews were originally presented at a Workshop of the EU COST Action 835 entitled 'Agriculturally Important Toxigenic Fungi' (Chairperson Antonio Logrieco, Bari, Italy), held in East Malling, UK at the Horticultural Research International in September 2002. We hope the information provided will stimulate scientists world-wide to assess the risk of toxins accumulating in plants under a range of environmental conditions and that this will provide an insight into how the accumulation of these toxins can be kept to a minimum. XiangmingXu JohnBailey MichaelCooke EuropeanJournalofPlantPathology109: 645-667, 2003. (c) 2003KluwerAcademicPublishers.
In response to low iron availability in the environment most microorganisms synthesize iron chelators, called siderophores. Bacteria and fungi produce a broad range of structurally diverse siderophores, which all show a very high affinity for ferric ions. "Microbial Siderophores" presents an up-to-date overview of the chemistry, biology and biotechnology of these iron chelators. Following an introduction to the structure, functions and regulation of fungal siderophores, several chapters focus on siderophores of pseudomonads. Here, the technique of siderotyping, which has proved to be a rapid, accurate and inexpensive tool for pseudomonad characterization and identification, is described. Further, the biological significance of siderophores of symbiotic fungi and the possible role of siderophores in pathogenesis are discussed. In addition to methodological approaches, chapters on the biotechnological production of siderophores and their application in promoting human and plant health are included.
Insects are great classroom study organisms. They are easy to collect and raise and have a fascinating array of life histories. Because they are small and have tremendous reproductive capacity ecological studies of dispersion, predation, parasitism and reproduction can be studied in compressed timeframes and small areas relative to similar studies of larger organisms. Insects are also important bioindicators of the health of ecosystems. In a small space and with very little cost colonies of insects can be raised in classrooms for use in behavioral and physiological studies. The purpose of this book is to explain how to build and use insect collecting and rearing devices and through explanations of the various techniques stimulate educators to explore the study of insects in their classrooms. Insects are often given little consideration with regard to humane handling practices. Please remember that insects are living creatures and, as such, are entitled to the same treatment as other living creatures. Teachers should remember that students look to them for clues to the proper way of behaving in new situations. When collecting and working in the "field" educators should teach students to respect the environment. Do not collect more organisms than needed, treat all of the organisms you collect with care, and try not to leave signs of your presence in an area by returning rocks, logs, etc. to their original locations. If you must kill animals you've collected, do so quickly and humanely.
Investigations on various aspects of plant-pathogen interactions have the ultimate aim of providing information that may be useful for the development of effective crop disease management systems. Molecular techniques have accelerated the formulation of short- and long-term strategies of disease management. Exclusion and eradication of plant pathogens by rapid and precise detection and identification of microbial pathogens in symptomatic and asymptomatic plants and planting materials by employing molecular methods has been practiced extensively by quarantines and certification programs with a decisive advantage. Identification of sources of resistance genes, cloning and characterization of desired resistance genes and incorporation of resistance gene(s) into cultivars and transformation of plants with selected gene(s) have been successfully performed by applying appropriate molecular techniques. Induction of resistance in susceptible cultivars by using biotic and abiotic inducers of resistance is a practical proposition for several crops whose resistance levels could not be improved by breeding or transformation procedures. The risks of emergence of pathogen strains less sensitive or resistant to chemicals have been reduced appreciably by rapid identification of resistant strains and monitoring the occurrence of such strains in different geographical locations.
The Conference on Pseudomonas syringae which started in 1973 as an informal meeting of a group of scientists working on these bacteria in Angers, France, has become more and more important with time. Many meetings have been held since then: 1984, 1987, 1991, 1995, and 2002 in Cape Sounion, Greece; Lisbon, Portugal; Florence, Italy; Berlin, Germany; and Maratea, Italy; respectively. This Conference is considered as the most important scientific forum in which recent advances in different research aspects on Pseudomonas syringae, a plant pathogenic bacterial species that includes a high number of pathogens (referred as pathovars) and Related Pathogens such as Acidovorax, Burkholderia, Ralstonia, affecting several economically important crops. The proceedings resulting from these meetings are considered as valuable sources of information related to this group of pathogens. The interest in organising this conference regularly is reflected by the attendance of more than 80 scientists from 20 countries worldwide, who participated at the 7th International Conference on Pseudomonas syringae pathovars and related pat- gens organized by the Institut Agronomique et Veterinaire Hassan II in Agadir, Morocco, from 13th to 16th November 2006."
In the context of increasing international concern for food and environmental quality, use of Plant Growth-Promoting Rhizobacteria (PGPR) for reducing chemical inputs in agriculture is a potentially important issue. PGPR are root-colonizing bacteria that exert beneficial effects on plant growth and development, but they can be also employed in the control of plant pathogens, for enhancing the efficiency of fertilizers, and for degrading xenobiotic compounds. This book provides an update by renowned international experts on the most recent advances in the ecology of these important bacteria, the application of innovative methodologies for their study, their interaction with the host plant, and their potential application in agriculture.
Quite simply, this is required reading for anyone involved in managing agricultural research. With a wealth of practical solutions and advice, it offers a how-to guide for managers as well as highlighting the differences in the way that different nations approach this key area of research - one of the most widespread forms of inquiry in the world. The lessons that can be learned from this brilliant study apply in equal measure to developed and developing nations.
Pine forests face a global threat of pine wilt disease, which is being spread by vector beetles carrying pathogenic nematodes from dead trees to healthy ones. Among the host pines there are varying degrees of susceptibility, and nematode strains also contain a variety of virulences, both of which factors help to determine whether infected host trees will die or survive. As well, biotic and abiotic environmental factors influence the fate of infected trees. This book describes the history of the disease, pathogenic nematodes, vector beetles, the etiology and ecology of the disease, microorganisms involved, and control methods that utilize host resistance and biological control agents. Concrete, comprehensive, and the most up-to-date knowledge about this worldwide forest epidemic is presented for readers, enabling them to understand the nature and epidemic threat of pine wilt disease.
When I conceived this book, what I had in mind was what I did not know about coffee-parasitic nematodes (CPNs). Indeed, after reading many papers and several chapters in books, I felt far from having a comprehensive understanding of the subject. Not only would it be a daunting task to retrieve the numerous articles, reports, theses and dissertations on CPNs published since 1878, but it would also be impossible to learn, on my own, from all the enormous experience acquired by nematologists and coffee growers in so many countries. Therefore, this book is dedicated to those with restless minds, who want to know more about CPNs and their importance in coffee production worldwide. This book has been diligently written by top scientists in their areas of expertise or country, and it has been meticulously edited to guarantee precision without compromising an enjoyable read. I learned a lot from this book...I'm sure you will too. Finally, I'd like to thank Zuzana Bernhart from Springer, who believed in this project and decided to publish it; Susan Casement, who revised all chapters for grammatical correctness; and all the contributors, without whom this book would never have became a reality. Campos dos Goytacazes, RJ, Brazil Ricardo M. Souza vii Contents Part I The Crop 1 Coffee: The Plant and its Cultivation............................. 3 Henrique D. Vieira 2 The Coffee Industry: History and Future Perspectives.............. 19 Denis O. Seudieu Part II The Root-Lesion Nematode, Pratylenchus spp.
Studies on molecular biology of pathogens, infection process and disease resistance, have provided information essentially required to understand the vulnerable stages at which the pathogens can be tackled effectively and to adopt novel strategies to incorporate disease resistance genes from diverse sources and /or to induce resistance of cultivars with desirable agronomic attributes using biotic or abiotic agents. The nature of interaction between the gene products of the pathogen and plant appears to determine the outcome of the interaction resulting in either disease progression or suppression. Transgenic plants with engineered genes show promise for effective exploitation of this approach for practical application. Research efforts during the recent years to sequence the whole genomes of the pathogens and plants may lead to development of better ways of manipulating disease resistance mechanisms enabling the grower to achieve higher production levels and the consumer to enjoy safer food and agricultural products. Experimental protocols included in appropriate chapters will be useful for researchers and graduate students.
Ideally suited to horticulturalists and plant virologists, this highly useful text offers a multidisciplinary view on one of the major diseases of tomato crops, the tomato yellow leaf curl disease. It deals with epidemiological aspects of the disease as well as integrated pest management in the field. Coverage discusses the efforts aimed at breeding tomato plants resistant to the virus by classical breeding, by marker-assisted breeding and by genetic engineering.
Integrated Pest Management - Dissemination and Impact, Volume 2 is a sequel to Integrated Pest Management - Innovation-DevelopmentProcess, Volume 1. The book focuses on the IPM systems in the developed countries of North America, Europe and Australia, and the developing countries of Asia, Latin America and Africa. One of the major impedimentsin the dissemination and adoption of the IPM innovation is the complexity of the technology and reaching the vast population of farmers especially in the developing countries. The IPM-innovation development process is incomplete without the diffusion and adoption of IPM methods by the end users, and through its consequences. In spite of all the efforts in the developed and developing countries, the adoption of IPM is still low with few exceptions. The book covers the underlying concepts and methodologies of the diffusion of innovation theory and the program evaluation; and reviews the progress and impact of IPM programs implemented in the industrialized, the green revolution and the subsistence agricultural systems of the world. Forty-four experts from entomology, plant pathology, environmental science, agronomy, anthropology, economics and extensioneducationfromAfrica, Asia, Australia, Europe, NorthAmerica and South America have discussed impact of IPM with an interdisciplinary perspective. Each one of the experts is an authority in his or her eld of expertise. The researchers, farmers'education, supportingpoliciesofthegovernmentsandmarketforcesarethe elements of the IPM innovation system to achieve wider adoption of IPM strategy in agriculture.
Plant disease epidemiology deals with diseases in plant populations. During the past century, it has become a vibrant field of science, achieving significant conceptual innovations with an important impact on the management of plant diseases. Plant disease epidemiology mobilises concepts and methods from ecology, genetics, environmental physics, botany, and mathematics. It deals with cultivated and non-cultivated plants in environments where human activities may have had an impact. Now, plant disease epidemiology faces important questions. Global climate is changing at a rapid rate: will it render plant diseases more, or less, harmful to man-made ecosystems? There is much debate on this issue, partly because climate has sometimes very large effects on the local environment of growing plant canopies, and because the physical micro-environment so strongly influences plant diseases and their consequences on ecosystem functioning and performance and the way they are managed. Plant disease epidemiologists have a strong scientific tradition in studying climate-pathogen-disease relationships. Biodiversity is also of global concern. The decline of global biodiversity that is currently taking place has been referred to as the sixth great extinction process our planet has experienced during its history, but this time, it is man-made. Generations of plant pathologists, and especially, of plant disease epidemiologists, have been dealing with biodiversity. It is from this diversity that presumably the most potent instrument for disease management has been developed by plant pathologists: host plant resistance. Host plant diversity, and the disease resistance genes it harbours, can be deployed over time and space, according to epidemiological principles. Sustainable production and protection systems also need to be devised which could exploit scarcer resources sparingly, and if possible enhance the resource base. Plant disease epidemiologists alone cannot provide answers to such questions, but certainly could significantly contribute to these new strategies. This book provides an overview of some of the latest research in plant disease epidemiology from researchers at the cutting edge of this important discipline.
Phytohormones are very much involved in directing the plant growth, in a coordinated fashion in association with metabolism that provides energy and the building blocks to develop the form that we recognize as plant. Out of the recognized hormones, attention has largely been focused on Auxins, Gibberellins, Cytokinins, Abscisic acid, Ethylene and more recently to Brassinosteroids. However, in this book we are providing the information about a natural chemical, Salicylic Acid, that could be raised to the status of the above phytohormones because it has significant impact on various aspects of the plant life. Salicylic acid (SA) was first discovered as a major component in the extracts from Salix (willow) whose bark from ancient time, was used as an anti-inflammatory drug. This acid (SA) is a phenol, ubiquitous in plants generating a significant impact on plant growth and development, photosynthesis, transpiration, ion uptake and transport and also induces specific changes in leaf anatomy and chloroplast structure. SA is recognized as an endogenous signal, mediating in plant defence, against pathogens. This book includes contributions made by various experts, spread over the world. Since the work on Salicylic Acid is currently rather scattered it was thought prudent to draw this all together in one volume. This will naturally facilitate a ready reference of the material to students and researchers, alike.
Recent years have brought an upsurge of interest in the study of arbuscular mycorrhizal (AM) fungi, partly due to the realization that the effective utilization of these symbiotic soil fungi is likely to be essential in sustainable agriculture. Impressive progress has been made during the last decade in the study of this symbiosis largely as a result of increasing exploitation of molecular tools. Although early emphasis was placed on the use of molecular tools to study physiological processes triggered by the symbiosis, such as expression of symbiosis-specific polypeptides and modulation of host defences, other applications await. It was obvious to us that gathering leaders in the field to summarize these topics and point out research needs was necessary if we were to understand the physiology and function of AM fungi at a molecular level. In addition, we have taken the opportunity to present these reviews in a logical sequence of topics ranging from the initiation of the life cycle of the fungus to its functions in plant growth and in the below ground ecosystem. It was a challenge to limit this flood of information to the confines of one text. This is a very exciting time for mycorrhiza biologists and it is our hope that some of this excitement is conveyed to our readers.
The book 'Silent Spring' written by Rachel Carson in 1962, is considered the la- mark in changing the attitude of the scientists and the general public regarding the complete reliance on the synthetic pesticides for controlling the ravages caused by the pests in agriculture crops. For about ve decades, the Integrated Pest Mana- ment (IPM) is the accepted strategy for managing crop pests. IPM was practiced in Canet ~ e Valley, Peru in 1950s, even before the term IPM was coined. Integrated Pest management: Innovation-Development Process, Volume 1, focuses on the recog- tion of the dysfunctional consequences of the pesticide use in agriculture, through researchanddevelopmentoftheIntegratedPest Managementinnovations. Thebook aims to update the information on the global scenario of IPM with respect to the use of pesticides, its dysfunctional consequences, and the concepts and advan- ments made in IPM systems. This book is intended as a text as well as reference material for use in teaching the advancements made in IPM. The book provides an interdisciplinary perspective of IPM by the forty-three experts from the eld of entomology, plant pathology, plant breeding, plant physiology, biochemistry, and extension education. The introductory chapter (Chapter 1) gives an overview of IPM initiatives in the developed and developing countries from Asia, Africa, Australia, Europe, Latin America and North America. IPM concepts, opportunities and challenges are d- cussed in Chapter 2.
Mycorrhizal fungi are microbial engines which improve plant vigor and soil quality. They play a crucial role in plant nutrient uptake, water relations, ecosystem establishment, plant diversity, and the productivity of plants. Scientific research involves multidisciplinary approaches to understand the adaptation of mycorrhizae to the rhizosphere, mechanism of root colonization, effect on plant physiology and growth, biofertilization, plant resistance and biocontrol of plant pathogens. This book discusses and goes into detail on a number of topics: the molecular basis of nutrient exchange between arbuscular mycorrhizal (AM) fungi and host plants; the role of AM fungi in disease protection, alleviation of soil stresses and increasing grain production; interactions of AM fungi and beneficial saprophytic mycoflora in terms of plant growth promotion; the role of AM fungi in the restoration of native ecosystems; indirect contributions of AM fungi and soil aggregation to plant growth and mycorrhizosphere effect of multitrophic interaction; the mechanisms by which mycorrhizas change a disturbed ecosystem into productive land; the importance of reinstallation of mycorrhizal systems in the rhizosphere is emphasized and their impact on landscape regeneration, and in bioremediation of contaminated soils; Ectomycorrhizae (ECM) and their importance in forest ecosystems and associations of ECM in tropical rain forests function to maintain tropical monodominance; in vitro mycorrhization of micro-propagated plants, and visualizing and quantifying endorhizal fungi; the use of mycorrhizae, mainly AM and ECM, for sustainable agriculture and forestry.
Feeding on Non-Prey Resources by Natural Enemies Moshe Coll Reports on the consumption of non-prey food sources, particularly plant materials, by predators and parasitoids are common throughout the literature (reviewed recently by Naranjo and Gibson 1996, Coll 1998a, Coll and Guershon, 2002). Predators belonging to a variety of orders and families are known to feed on pollen and nectar, and adult parasitoids acquire nutrients from honeydew and floral and extrafloral nectar. A recent publication by Wackers et al. (2005) discusses the p- visioning of plant resources to natural enemies from the perspective of the plant, exploring the evolutionary possibility that plants enhance their defenses by recru- ing enemies to food sources. The present volume, in contrast, presents primarily the enemies' perspective, and as such is the first comprehensive review of the nut- tional importance of non-prey foods for insect predators and parasitoids. Although the ecological significance of feeding on non-prey foods has long been underappreciated, attempts have been made to manipulate nectar and pollen ava- ability in crop fields in order to enhance levels of biological pest control by natural enemies (van Emden, 1965; Hagen, 1986; Coll, 1998a). The importance of n- prey foods for the management of pest populations is also discussed in the book."
Plants have developed very sophisticated mechanisms to combat pathogens and pestsusingtheleastamountofreservedorgeneratedenergypossible. Theydothis by activating major defense mechanisms after recognition of the organisms that are considered to be detrimental to their survival; therefore they have been able to exist on Earth longer than any other higher organisms. It has been known for the past century that plants carry genetic information for inherited resistance against many pathogenic organisms including fungi, bacteria, and viruses, and that the relationship between pathogenic organisms and hosts plants are rather complex and in some cases time dependent. This genetic information has been the basis for breeding for resistance that has been employed by plant breeders to develop better-yielding disease resistant varieties, some of which are still being cultivated. Single gene resistance is one type of resistance which has been extensively studied by many research groups all around the world using biotechnological methodologies that have been the subject of many books and journal articles; therefore, it is beyond the scope of this book. This type of resistance is very effective, although it can be overcome by the pressure of pathogenic organisms since it depends on interaction of a single elicitor molecule from the pathogen with a single receptor site in the host.
Plant growth is of great economical and intellectual interest. Plants are the basis of our living environment, the production of our food and a myriad of plant-based natural products. Plant bio-mass is also becoming an important renewable energy resource. Agricultural plant cultivation and breeding programs have altered plant productivity and yield parameters extensively, yet the principles and underlying mechanisms are not well understood. At the cellular level, growth is the result of only two processes, cell division and cell expansion, but these two processes are controlled by intertwined signaling cascades and regulatory mechanisms forming complex regulatory networks. Ultimately this network is what plant scientists are trying to unravel. The sequencing of model and agronomically important plant genomes allows complete insight into the molecular components involved in each process. Methods to quantify the molecular changes, image growth processes and reconstruct growth regulatory networks are rapidly developing. This knowledge should help to elucidate key regulators and to design methods to engineer plant architecture and growth parameters for future human needs. This volume gives a comprehensive overview of what is known about plant growth regulation and growth restraints due to environmental conditions and should allow readers at all levels an entry into this exiting field of research.
This is a textbook providing basic data about the crop pests and the damage they inflict throughout the tropics and sub-tropics. Each major pest is illustrated by either a line drawing or a photograph, and sometimes the damage can also be seen. A world distribution map is provided for each species. Control measures tend to be general rather than very specific. Most of the pests are insects and mites, but some nematodes, molluscs, birds and mammals are included.
Ascochyta blights consistently affect large areas of grain legume production (pea, lentil, chickpea and faba bean) in all countries where they are cultivated. These diseases are capable of causing large yield losses under conducive environmental conditions. This book considers the state of the art by taking a comparative approach of Ascochyta blight diseases of cool season food and feed legumes. Topics considered are pathogen diversity, legume genetics and breeding, and integrated disease management. Reprinted from European Journal of Plant Pathology, Volume 119, No. 1, 2007
The main theme of the book is sustainable disease management in a European context. Some of the questions addressed are: How does society benefit from plant pathology research? How can new molecular approaches solve relevant problems in disease management? What other fields can we exploit in plant pathology research? What challenges are associated with free trade across the new borders? How can we contribute to solving problems of developing countries? How does plant pathology contribute to food quality and safety? How does globalization/internationalization affect teaching and extension in plant pathology? |
![]() ![]() You may like...
Eighteenth International Seaweed…
Robert J. Anderson, Juliet A. Brodie, …
Hardcover
R5,999
Discovery Miles 59 990
Algal And Cyanobacteria Symbioses
Martin Grube, Joseph Seckbach, …
Hardcover
R6,306
Discovery Miles 63 060
Seaweed - Foraging, Collecting, Pressing
Melanie Molesworth, Julia Bird
Hardcover
R693
Discovery Miles 6 930
|