Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
Groups that are the product of two subgroups are of particular interest to group theorists. In what way is the structure of the product related to that of its subgroups? This monograph gives the first detailed account of the most important results that have been found about groups of this form over the past 35 years. Although the emphasis is on infinite groups, some relevant theorems about finite products of groups are also proved. The material presented will be of interest for research students and specialists in group theory. In particular, it can be used in seminars or to supplement a general group theory course. A special chapter on conjugacy and splitting theorems obtained by means of the cohomology of groups has never appeared in book form and should be of independent interest.
"Real Analysis" is the third volume in the Princeton Lectures in Analysis, a series of four textbooks that aim to present, in an integrated manner, the core areas of analysis. Here the focus is on the development of measure and integration theory, differentiation and integration, Hilbert spaces, and Hausdorff measure and fractals. This book reflects the objective of the series as a whole: to make plain the organic unity that exists between the various parts of the subject, and to illustrate the wide applicability of ideas of analysis to other fields of mathematics and science. After setting forth the basic facts of measure theory, Lebesgue integration, and differentiation on Euclidian spaces, the authors move to the elements of Hilbert space, via the L2 theory. They next present basic illustrations of these concepts from Fourier analysis, partial differential equations, and complex analysis. The final part of the book introduces the reader to the fascinating subject of fractional-dimensional sets, including Hausdorff measure, self-replicating sets, space-filling curves, and Besicovitch sets. Each chapter has a series of exercises, from the relatively easy to the more complex, that are tied directly to the text. A substantial number of hints encourage the reader to take on even the more challenging exercises. As with the other volumes in the series, "Real Analysis" is accessible to students interested in such diverse disciplines as mathematics, physics, engineering, and finance, at both the undergraduate and graduate levels. Also available, the first two volumes in the Princeton Lectures in Analysis:
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin s global theory of pseudo-differential operators, and Feichtinger s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by Bopp operators (also called Landau operators in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Advances on Fractional Inequalities use primarily the Caputo fractional derivative, as the most important in applications, and presents the first fractional differentiation inequalities of Opial type which involves the balanced fractional derivatives. The book continues with right and mixed fractional differentiation Ostrowski inequalities in the univariate and multivariate cases. Next the right and left, as well as mixed, Landau fractional differentiation inequalities in the univariate and multivariate cases are illustrated. Throughout the book many applications are given. Fractional differentiation inequalities are by themselves an important and great mathematical topic for research. Furthermore they have many applications, the most important ones are in establishing uniqueness of solution in fractional differential equations and systems and in fractional partial differential equations. Also they provide upper bounds to the solutions of the above equations. Fractional Calculus has emerged as very useful over the last forty years due to its many applications in almost all applied sciences. This is currently seen in applications in acoustic wave propagation in inhomogeneous porous material, diffusive transport, fluid flow, dynamical processes in self-similar structures, dynamics of earthquakes, optics, geology, viscoelastic materials, bio-sciences, bioengineering, medicine, economics, probability and statistics, astrophysics, chemical engineering, physics, splines, tomography, fluid mechanics, electromagnetic waves, nonlinear control, signal processing, control of power electronic, converters, chaotic dynamics, polymer science, proteins, polymer physics, electrochemistry, statistical physics, rheology, thermodynamics, neural networks, etc. Almost all fields of research in science and engineering use fractional calculus in order to describe results. This book is a part of Fractional Calculus, therefore it is useful for researchers and graduate students for research, seminars and advanced graduate courses, in pure and applied mathematics, engineering and all other applied sciences."
New isoperimetric inequalities and random process techniques have recently appeared at the basis of the modern understanding of Probability in Banach spaces. Based on these tools, the book presents a complete treatment of the main aspects of Probability in Banach spaces (e.g. boundedness and continuity of random processes, integrability and limit theorems for vector valued random variables) and of some of their links to Geometry of Banach spaces. Its purpose is to present some of the main aspects of this theory, from the foundations to the latest developments, treated with the most recent and updated tools. In particular, the most important features are the systematic use of isoperimetry and related concentration of measure phenomena (to study integrability and limit theorems for vector valued random variables), and recent abstract random process techniques (entropy and majorizing measures). Some examples of these probabilistic ideas to classical Banach space theory complete this exposition.
The discoveries of the last decades have opened new perspectives for the old field of Hamiltonian systems and led to the creation of a new field: symplectic topology. Surprising rigidity phenomena demonstrate that the nature of symplectic mappings is very different from that of volume preserving mappings. This raises new questions, many of them still unanswered. On the other hand, analysis of an old variational principle in classical mechanics has established global periodic phenomena in Hamiltonian systems. As it turns out, these seemingly different phenomena are mysteriously related. One of the links is a class of symplectic invariants, called symplectic capacities. These invariants are the main theme of this book, which includes such topics as basic symplectic geometry, symplectic capacities and rigidity, periodic orbits for Hamiltonian systems and the action principle, a bi-invariant metric on the symplectic diffeomorphism group and its geometry, symplectic fixed point theory, the Arnold conjectures and first order elliptic systems, and finally a survey on Floer homology and symplectic homology. The exposition is self-contained and addressed to researchers and students from the graduate level onwards.
The main theme of the book is the study, from the standpoint of s-numbers, of integral operators of Hardy type and related Sobolev embeddings. In the theory of s-numbers the idea is to attach to every bounded linear map between Banach spaces a monotone decreasing sequence of non-negative numbers with a view to the classification of operators according to the way in which these numbers approach a limit: approximation numbers provide an especially important example of such numbers. The asymptotic behavior of the s-numbers of Hardy operators acting between Lebesgue spaces is determined here in a wide variety of cases. The proof methods involve the geometry of Banach spaces and generalized trigonometric functions; there are connections with the theory of the p-Laplacian.
In this monograph, the authors present a compact, thorough, systematic, and self-contained oscillation theory for linear, half-linear, superlinear, and sublinear second-order ordinary differential equations. An important feature of this monograph is the illustration of several results with examples of current interest. This book will stimulate further research into oscillation theory. This book is written at a graduate level, and is intended for university libraries, graduate students, and researchers working in the field of ordinary differential equations.
This volume considers various methods for constructing cubature and quadrature formulas of arbitrary degree. These formulas are intended to approximate the calculation of multiple and conventional integrals over a bounded domain of integration. The latter is assumed to have a piecewise-smooth boundary and to be arbitrary in other aspects. Particular emphasis is placed on invariant cubature formulas and those for a cube, a simplex, and other polyhedra. Here, the techniques of functional analysis and partial differential equations are applied to the classical problem of numerical integration, to establish many important and deep analytical properties of cubature formulas. The prerequisites of the theory of many-dimensional discrete function spaces and the theory of finite differences are concisely presented. Special attention is paid to constructing and studying the optimal cubature formulas in Sobolev spaces. As an asymptotically optimal sequence of cubature formulas, a many-dimensional abstraction of the Gregory quadrature is indicated. Audience: This book is intended for researchers having a basic knowledge of functional analysis who are interested in the applications of modern theoretical methods to numerical mathematics.
Approach your problems from the right It isn't that they can't see the solution. end and begin with the answers. Then, It is that they can't see the problem. one day, perhaps you will find the final G.K. Chesterton, The Scandal of Fa question. ther Brown 'The point of a Pin'. 'The Hermit Clad in Crane Feathers' in R. Van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of mono graphs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, cod ing theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical pro gramming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will tind the tinal question. G. K. Chesterton. The Scandal of Father Brown 'The point of a Pin'. 'The Hermit CIad in Crane Feathers' in R. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite of ten in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to fiItering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
Semilinear elliptic equations are of fundamental importance for the study of geometry, physics, mechanics, engineering and life sciences. The variational approach to these equations has experienced spectacular success in recent years, reaching a high level of complexity and refinement, with a multitude of applications. Additionally, some of the simplest variational methods are evolving as classical tools in the field of nonlinear differential equations. This book is an introduction to variational methods and their applications to semilinear elliptic problems. Providing a comprehensive overview on the subject, this book will support both student and teacher engaged in a first course in nonlinear elliptic equations. The material is introduced gradually, and in some cases redundancy is added to stress the fundamental steps in theory-building. Topics include differential calculus for functionals, linear theory, and existence theorems by minimization techniques and min-max procedures. Requiring a basic knowledge of Analysis, Functional Analysis and the most common function spaces, such as Lebesgue and Sobolev spaces, this book will be of primary use to graduate students based in the field of nonlinear partial differential equations. It will also serve as valuable reading for final year undergraduates seeking to learn about basic working tools from variational methods and the management of certain types of nonlinear problems.
. The theory of difference equations, the methods used in their solutions and their wide applications have advanced beyond their adolescent stage to occupy a central position in Applicable Analysis. In fact, in the last five years, the proliferation of the subject is witnessed by hundreds of research articles and several monographs, two International Conferences and numerous Special Sessions, and a new Journal as well as several special issues of existing journals, all devoted to the theme of Difference Equations. Now even those experts who believe in the universality of differential equations are discovering the sometimes striking divergence between the continuous and the discrete. There is no doubt that the theory of difference equations will continue to play an important role in mathematics as a whole. In 1992, the first author published a monograph on the subject entitled Difference Equations and Inequalities. This book was an in-depth survey of the field up to the year of publication. Since then, the subject has grown to such an extent that it is now quite impossible for a similar survey, even to cover just the results obtained in the last four years, to be written. In the present monograph, we have collected some of the results which we have obtained in the last few years, as well as some yet unpublished ones.
For many, modern functional analysis dates back to Banach's book [Ba32]. Here, such powerful results as the Hahn-Banach theorem, the open-mapping theorem and the uniform boundedness principle were developed in the setting of complete normed and complete metrizable spaces. When analysts realized the power and applicability of these methods, they sought to generalize the concept of a metric space and to broaden the scope of these theorems. Topological methods had been generally available since the appearance of Hausdorff's book in 1914. So it is surprising that it took so long to recognize that they could provide the means for this generalization. Indeed, the theory of topo- logical vector spaces was developed systematically only after 1950 by a great many different people, induding Bourbaki, Dieudonne, Grothendieck, Kothe, Mackey, Schwartz and Treves. The resulting body of work produced a whole new area of mathematics and generalized Banach's results. One of the great successes here was the development of the theory of distributions. While the not ion of a convergent sequence is very old, that of a convergent fil- ter dates back only to Cartan [Ca]. And while sequential convergence structures date back to Frechet [Fr], filter convergence structures are much more recent: [Ch], [Ko] and [Fi]. Initially, convergence spaces and convergence vector spaces were used by [Ko], [Wl], [Ba], [Ke64], [Ke65], [Ke74], [FB] and in particular [Bz] for topology and analysis.
This EMS volume, the first edition of which was published as Dynamical Systems II, EMS 2, familiarizes the reader with the fundamental ideas and results of modern ergodic theory and its applications to dynamical systems and statistical mechanics. The enlarged and revised second edition adds two new contributions on ergodic theory of flows on homogeneous manifolds and on methods of algebraic geometry in the theory of interval exchange transformations.
One service mathematic;., has Jcndcml the 'Et moi, .. si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc: rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The last fifty years have witnessed several monographs and hundreds of research articles on the theory, constructive methods and wide spectrum of applications of boundary value problems for ordinary differential equations. In this vast field of research, the conjugate (Hermite) and the right focal point (Abei) types of problems have received the maximum attention. This is largely due to the fact that these types of problems are basic, in the sense that the methods employed in their study are easily extendable to other types of prob lems. Moreover, the conjugate and the right focal point types of boundary value problems occur frequently in real world problems. In the monograph Boundary Value Problems for Higher Order Differential Equations published in 1986, we addressed the theory of conjugate boundary value problems. At that time the results on right focal point problems were scarce; however, in the last ten years extensive research has been done. In Chapter 1 of the mono graph we offer up-to-date information of this newly developed theory of right focal point boundary value problems. Until twenty years ago Difference Equations were considered as the dis cretizations of the differential equations. Further, it was tacitly taken for granted that the theories of difference and differential equations are parallel. However, striking diversities and wide applications reported in the last two decades have made difference equations one of the major areas of research."
There seems to be two types of books on inequalities. On the one hand there are treatises that attempt to cover all or most aspects of the subject, and where an attempt is made to give all results in their best possible form, together with either a full proof or a sketch of the proof together with references to where a full proof can be found. Such books, aimed at the professional pure and applied mathematician, are rare. The first such, that brought some order to this untidy field, is the classical "Inequalities" of Hardy, Littlewood & P6lya, published in 1934. Important as this outstanding work was and still is, it made no attempt at completeness; rather it consisted of the total knowledge of three front rank mathematicians in a field in which each had made fundamental contributions. Extensive as this combined knowledge was there were inevitably certain lacunre; some important results, such as Steffensen's inequality, were not mentioned at all; the works of certain schools of mathematicians were omitted, and many important ideas were not developed, appearing as exercises at the ends of chapters. The later book "Inequalities" by Beckenbach & Bellman, published in 1961, repairs many of these omissions. However this last book is far from a complete coverage of the field, either in depth or scope.
This volume is devoted to integral inequalities of the Gronwall-Bellman-Bihari type. Following a systematic exposition of linear and nonlinear inequalities, attention is paid to analogues including integro-differential inequalities, functional differential inequalities, and discrete and abstract analogues. Applications to the investigation of the properties of solutions of various classes of equations such as uniqueness, stability, dichotomy, asymptotic equivalence and behaviour is also discussed. The book comprises three chapters. Chapter I and II consider classical linear and nonlinear integral inequalities. Chapter III is devoted to various classes of integral inequalities of Gronwall type, and their analogues, which find applications in the theory of integro-differential equations, partial differential equations, differential equations with deviating argument, impube differential equations, etc. Each chapter concludes with a section illustrating the manner of application. The book also contains an extensive bibliography. For researchers whose work involves the theory and application of integral inequalities in mathematics, engineering and physics.
This book is devoted to one of the main questions of the theory of extremal prob lems, namely, to necessary and sufficient extremality conditions. It is intended mostly for mathematicians and also for all those who are interested in optimiza tion problems. The book may be useful for advanced students, post-graduated students, and researchers. The book consists of four chapters. In Chap. 1 we study the abstract minimization problem with constraints, which is often called the mathemati cal programming problem. Chapter 2 is devoted to one of the most important classes of extremal problems, the optimal control problem. In the third chapter we study one of the main objects of the calculus of variations, the integral quadratic form. In the concluding, fourth, chapter we study local properties of smooth nonlinear mappings in a neighborhood of an abnormal point. The problems which are studied in this book (of course, in addition to their extremal nature) are united by our main interest being in the study of the so called abnormal or degenerate problems. This is the main distinction of the present book from a large number of books devoted to theory of extremal problems, among which there are many excellent textbooks, and books such as, e.g., 13, 38, 59, 78, 82, 86, 101, 112, 119], to mention a few."
This volume is devoted to the "hyperbolic theory" of dynamical systems (DS), that is, the theory of smooth DS's with hyperbolic behaviour of the tra jectories (generally speaking, not the individual trajectories, but trajectories filling out more or less "significant" subsets in the phase space. Hyperbolicity the property that under a small displacement of any of a trajectory consists in point of it to one side of the trajectory, the change with time of the relative positions of the original and displaced points resulting from the action of the DS is reminiscent of the mot ion next to a saddle. If there are "sufficiently many" such trajectories and the phase space is compact, then although they "tend to diverge from one another" as it were, they "have nowhere to go" and their behaviour acquires a complicated intricate character. (In the physical literature one often talks about "chaos" in such situations. ) This type of be haviour would appear to be the opposite of the more customary and simple type of behaviour characterized by its own kind of stability and regularity of the motions (these words are for the moment not being used as a strict ter 1 minology but rather as descriptive informal terms). The ergodic properties of DS's with hyperbolic behaviour of trajectories (Bunimovich et al. 1985) have already been considered in Volume 2 of this series. In this volume we therefore consider mainly the properties of a topological character (see below 2 for further details)."
In the ideal world, major decisions would be made based on complete and reliable information available to the decision maker. We live in a world of uncertainties, and decisions must be made from information which may be incomplete and may contain uncertainty. The key mathematical question addressed in this volume is "how to make decision in the presence of quantifiable uncertainty." The volume contains articles on model problems of decision making process in the energy and power industry when the available information is noisy and/or incomplete. The major tools used in studying these problems are mathematical modeling and optimization techniques; especially stochastic optimization. These articles are meant to provide an insight into this rapidly developing field, which lies in the intersection of applied statistics, probability, operations research, and economic theory. It is hoped that the present volume will provide entry to newcomers into the field, and stimulation for further research.
Spline functions entered Approximation Theory as solutions of natural extremal problems. A typical example is the problem of drawing a function curve through given n + k points that has a minimal norm of its k-th derivative. Isolated facts about the functions, now called splines, can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J. Favard, L. Tschakaloff. However, the Theory of Spline Functions has developed in the last 30 years by the effort of dozens of mathematicians. Recent fundamental results on multivariate polynomial interpolation and multivari ate splines have initiated a new wave of theoretical investigations and variety of applications. The purpose of this book is to introduce the reader to the theory of spline functions. The emphasis is given to some new developments, such as the general Birkoff's type interpolation, the extremal properties of the splines and their prominant role in the optimal recovery of functions, multivariate interpolation by polynomials and splines. The material presented is based on the lectures of the authors, given to the students at the University of Sofia and Yerevan University during the last 10 years. Some more elementary results are left as excercises and detailed hints are given."
This book is devoted to some results from the classical Point Set Theory and their applications to certain problems in mathematical analysis of the real line. Notice that various topics from this theory are presented in several books and surveys. From among the most important works devoted to Point Set Theory, let us first of all mention the excellent book by Oxtoby [83] in which a deep analogy between measure and category is discussed in detail. Further, an interesting general approach to problems concerning measure and category is developed in the well-known monograph by Morgan [79] where a fundamental concept of a category base is introduced and investigated. We also wish to mention that the monograph by Cichon, W";glorz and the author [19] has recently been published. In that book, certain classes of subsets of the real line are studied and various cardinal valued functions (characteristics) closely connected with those classes are investigated. Obviously, the IT-ideal of all Lebesgue measure zero subsets of the real line and the IT-ideal of all first category subsets of the same line are extensively studied in [19], and several relatively new results concerning this topic are presented. Finally, it is reasonable to notice here that some special sets of points, the so-called singular spaces, are considered in the classi
In 1909 Alfred Haar introduced into analysis a remarkable system which bears his name. The Haar system is a complete orthonormal system on [0,1] and the Fourier-Haar series for arbitrary continuous function converges uniformly to this function. This volume is devoted to the investigation of the Haar system from the operator theory point of view. The main subjects treated are: classical results on unconditional convergence of the Haar series in modern presentation; Fourier-Haar coefficients; reproducibility; martingales; monotone bases in rearrangement invariant spaces; rearrangements and multipliers with respect to the Haar system; subspaces generated by subsequences of the Haar system; the criterion of equivalence of the Haar and Franklin systems. Audience: This book will be of interest to graduate students and researchers whose work involves functional analysis and operator theory. |
You may like...
Theory of Translation Closedness for…
Chao Wang, Ravi P. Agarwal, …
Hardcover
R3,626
Discovery Miles 36 260
Fixed Point Theory in Ordered Sets and…
Siegfried Carl, Seppo Heikkila
Hardcover
R3,073
Discovery Miles 30 730
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Igor V. Pavlov, …
Hardcover
R5,497
Discovery Miles 54 970
Operator Theory and Harmonic Analysis…
Alexey N. Karapetyants, Vladislav V. Kravchenko, …
Hardcover
R6,266
Discovery Miles 62 660
Fractional Calculus: Models And…
Dumitru Baleanu, Kai Diethelm, …
Hardcover
R3,898
Discovery Miles 38 980
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,581
Discovery Miles 35 810
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,720
Discovery Miles 37 200
|