![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
The main purpose of this book is to give a detailed and complete survey of recent progress related to the real-variable theory of Musielak-Orlicz Hardy-type function spaces, and to lay the foundations for further applications. The real-variable theory of function spaces has always been at the core of harmonic analysis. Recently, motivated by certain questions in analysis, some more general Musielak-Orlicz Hardy-type function spaces were introduced. These spaces are defined via growth functions which may vary in both the spatial variable and the growth variable. By selecting special growth functions, the resulting spaces may have subtler and finer structures, which are necessary in order to solve various endpoint or sharp problems. This book is written for graduate students and researchers interested in function spaces and, in particular, Hardy-type spaces.
This book offers a systematic treatment of a classic topic in Analysis. It fills a gap in the existing literature by presenting in detail the classic -Hoelder condition and introducing the notion of locally Hoelder-continuous function in an open set in Rn. Further, it provides the essential notions of multidimensional geometry applied to analysis. Written in an accessible style and with proofs given as clearly as possible, it is a valuable resource for graduate students in Mathematical Analysis and researchers dealing with Hoelder-continuous functions and their applications.
Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonne, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points - which are rarely treated in books at this level - and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.
With a fresh geometric approach that incorporates more than 250 illustrations, this textbook sets itself apart from all others in advanced calculus. Besides the classical capstones--the change of variables formula, implicit and inverse function theorems, the integral theorems of Gauss and Stokes--the text treats other important topics in differential analysis, such as Morse's lemma and the Poincare lemma. The ideas behind most topics can be understood with just two or three variables. The book incorporates modern computational tools to give visualization real power. Using 2D and 3D graphics, the book offers new insights into fundamental elements of the calculus of differentiable maps. The geometric theme continues with an analysis of the physical meaning of the divergence and the curl at a level of detail not found in other advanced calculus books. This is a textbook for undergraduates and graduate students in mathematics, the physical sciences, and economics. Prerequisites are an introduction to linear algebra and multivariable calculus. There is enough material for a year-long course on advanced calculus and for a variety of semester courses--including topics in geometry. The measured pace of the book, with its extensive examples and illustrations, make it especially suitable for independent study.
This book introduces the basic concepts of real and functional analysis. It presents the fundamentals of the calculus of variations, convex analysis, duality, and optimization that are necessary to develop applications to physics and engineering problems. The book includes introductory and advanced concepts in measure and integration, as well as an introduction to Sobolev spaces. The problems presented are nonlinear, with non-convex variational formulation. Notably, the primal global minima may not be attained in some situations, in which cases the solution of the dual problem corresponds to an appropriate weak cluster point of minimizing sequences for the primal one. Indeed, the dual approach more readily facilitates numerical computations for some of the selected models. While intended primarily for applied mathematicians, the text will also be of interest to engineers, physicists, and other researchers in related fields.
Victor Isakov This volume contains various results on partial di?erential equations where Sobolev spaces are used. Their selection is motivated by the research int- ests of the editor and the geographicallinks to the places where S. L. Sobolev worked and lived: St. Petersburg, Moscow, and Novosibirsk. Most of the papers are written by leading experts in control theory and inverse pr- lems. Another reason for the selection is a strong link to applied areas. In my opinion, control theory and inverse problems are main areas of di?er- tial equations of importance for some branches of contemporary science and engineering. S. L. Sobolev, as many great mathematicians, was very much motivated by applications. He did not distinguished between pure and - plied mathematics, but, in his own words, between "good mathematics and bad mathematics. " While he possessed a brilliant analytical technique, he most valued innovative ideas, solutions of deep conceptual problems, and not mathematical decorations, perfecting exposition, and "generalizations. " S. L. Sobolev himself never published papers on inverse problems or c- trol theory, but he was very much aware of the state of art and he monitored research on inverse problems. In particular, in his lecture at a Conference on Di?erentialEquationsin1954(found inSobolev'sarchiveandmadeavailable to me by Alexander Bukhgeim), he outlined main inverse problems in g- physics: theinverseseismicproblem, theelectromagneticprospecting, andthe inverse problem of gravimetry.
Sobolev spaces become the established and universal language of partial differential equations and mathematical analysis. Among a huge variety of problems where Sobolev spaces are used, the following important topics are the focus of this volume: boundary value problems in domains with singularities, higher order partial differential equations, local polynomial approximations, inequalities in Sobolev-Lorentz spaces, function spaces in cellular domains, the spectrum of a Schrodinger operator with negative potential and other spectral problems, criteria for the complete integration of systems of differential equations with applications to differential geometry, some aspects of differential forms on Riemannian manifolds related to Sobolev inequalities, Brownian motion on a Cartan-Hadamard manifold, etc. Two short biographical articles on the works of Sobolev in the 1930s and the foundation of Akademgorodok in Siberia, supplied with unique archive photos of S. Sobolev are included.
In this book we suggest a unified method of constructing near-minimizers for certain important functionals arising in approximation, harmonic analysis and ill-posed problems and most widely used in interpolation theory. The constructions are based on far-reaching refinements of the classical Calderon-Zygmund decomposition. These new Calderon-Zygmund decompositions in turn are produced with the help of new covering theorems that combine many remarkable features of classical results established by Besicovitch, Whitney and Wiener. In many cases the minimizers constructed in the book are stable (i.e., remain near-minimizers) under the action of Calderon-Zygmund singular integral operators. The book is divided into two parts. While the new method is presented in great detail in the second part, the first is mainly devoted to the prerequisites needed for a self-contained presentation of the main topic. There we discuss the classical covering results mentioned above, various spectacular applications of the classical Calderon-Zygmund decompositions, and the relationship of all this to real interpolation. It also serves as a quick introduction to such important topics as spaces of smooth functions or singular integrals.
Clifford analysis, a branch of mathematics that has been developed since about 1970, has important theoretical value and several applications. In this book, the authors introduce many properties of regular functions and generalized regular functions in real Clifford analysis, as well as harmonic functions in complex Clifford analysis. It covers important developments in handling the incommutativity of multiplication in Clifford algebra, the definitions and computations of high-order singular integrals, boundary value problems, and so on. In addition, the book considers harmonic analysis and boundary value problems in four kinds of characteristic fields proposed by Luogeng Hua for complex analysis of several variables. The great majority of the contents originate in the authors' investigations, and this new monograph will be interesting for researchers studying the theory of functions.
This volume contains the proceedings of the OTAMP 2008 (Operator Theory, Analysis and Mathematical Physics) conference held at the Mathematical Research and Conference Center in Bedlewo near Poznan. It is composed of original research articles describing important results presented at the conference, some with extended review sections, as well as presentations by young researchers. Special sessions were devoted to random and quasi-periodic differential operators, orthogonal polynomials, Jacobi and CMV matrices, and quantum graphs. This volume also reflects new trends in spectral theory, where much emphasis is given to operators with magnetic fields and non-self-adjoint problems. The book is geared towards scientists from advanced undergraduate students to researchers interested in the recent development on the borderline between operator theory and mathematical physics, especially spectral theory for Schroedinger operators and Jacobi matrices.
The three volumes of A Course in Mathematical Analysis provide a full and detailed account of all those elements of real and complex analysis that an undergraduate mathematics student can expect to encounter in their first two or three years of study. Containing hundreds of exercises, examples and applications, these books will become an invaluable resource for both students and instructors. This first volume focuses on the analysis of real-valued functions of a real variable. Besides developing the basic theory it describes many applications, including a chapter on Fourier series. It also includes a Prologue in which the author introduces the axioms of set theory and uses them to construct the real number system. Volume II goes on to consider metric and topological spaces and functions of several variables. Volume III covers complex analysis and the theory of measure and integration.
Although the study of dynamical systems is mainly concerned with single trans formations and one-parameter flows (i. e. with actions of Z, N, JR, or JR+), er godic theory inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multi-dimensional sym metry groups. However, the wealth of concrete and natural examples, which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. A remarkable exception is provided by a class of geometric actions of (discrete subgroups of) semi-simple Lie groups, which have led to the discovery of one of the most striking new phenomena in multi-dimensional ergodic theory: under suitable circumstances orbit equivalence of such actions implies not only measurable conjugacy, but the conjugating map itself has to be extremely well behaved. Some of these rigidity properties are inherited by certain abelian subgroups of these groups, but the very special nature of the actions involved does not allow any general conjectures about actions of multi-dimensional abelian groups. Beyond commuting group rotations, commuting toral automorphisms and certain other algebraic examples (cf. [39]) it is quite difficult to find non-trivial smooth Zd-actions on finite-dimensional manifolds. In addition to scarcity, these examples give rise to actions with zero entropy, since smooth Zd-actions with positive entropy cannot exist on finite-dimensional, connected manifolds. Cellular automata (i. e.
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderon-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderon's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
This book offers a concise introduction to mathematical inequalities for graduate students and researchers in the fields of engineering and applied mathematics. It begins by reviewing essential facts from algebra and calculus and proceeds with a presentation of the central inequalities of applied analysis, illustrating a wide variety of practical applications. The text provides a gentle introduction to abstract spaces, such as metric, normed and inner product spaces. It also provides full coverage of the central inequalities of applied analysis, such as Young's inequality, the inequality of the means, Hölder's inequality, Minkowski's inequality, the Cauchy–Schwarz inequality, Chebyshev's inequality, Jensen's inequality and the triangle inequality. The second edition features extended coverage of applications, including continuum mechanics and interval analysis. It also includes many additional examples and exercises with hints and full solutions that may appeal to upper-level undergraduate and graduate students, as well as researchers in engineering, mathematics, physics, chemistry or any other quantitative science.
This textbook provides a detailed treatment of abstract integration theory, construction of the Lebesgue measure via the Riesz-Markov Theorem and also via the Caratheodory Theorem. It also includes some elementary properties of Hausdorff measures as well as the basic properties of spaces of integrable functions and standard theorems on integrals depending on a parameter. Integration on a product space, change of variables formulas as well as the construction and study of classical Cantor sets are treated in detail. Classical convolution inequalities, such as Young's inequality and Hardy-Littlewood-Sobolev inequality are proven. The Radon-Nikodym theorem, notions of harmonic analysis, classical inequalities and interpolation theorems, including Marcinkiewicz's theorem, the definition of Lebesgue points and Lebesgue differentiation theorem are further topics included. A detailed appendix provides the reader with various elements of elementary mathematics, such as a discussion around the calculation of antiderivatives or the Gamma function. The appendix also provides more advanced material such as some basic properties of cardinals and ordinals which are useful in the study of measurability. "
This book offers a first course in analysis for scientists and engineers. It can be used at the advanced undergraduate level or as part of the curriculum in a graduate program. The book is built around metric spaces. In the first three chapters, the authors lay the foundational material and cover the all-important "four-C's": convergence, completeness, compactness, and continuity. In subsequent chapters, the basic tools of analysis are used to give brief introductions to differential and integral equations, convex analysis, and measure theory. The treatment is modern and aesthetically pleasing. It lays the groundwork for the needs of classical fields as well as the important new fields of optimization and probability theory.
This is a rigorous introduction to real analysis for undergraduate students, starting from the axioms for a complete ordered field and a little set theory. The book avoids any preconceptions about the real numbers and takes them to be nothing but the elements of a complete ordered field. All of the standard topics are included, as well as a proper treatment of the trigonometric functions, which many authors take for granted. The final chapters of the book provide a gentle, example-based introduction to metric spaces with an application to differential equations on the real line. The author's exposition is concise and to the point, helping students focus on the essentials. Over 200 exercises of varying difficulty are included, many of them adding to the theory in the text. The book is perfect for second-year undergraduates and for more advanced students who need a foundation in real analysis.
This is an English translation of Bourbaki's Fonctions d'une Variable Reelle. Coverage includes: functions allowed to take values in topological vector spaces, asymptotic expansions are treated on a filtered set equipped with a comparison scale, theorems on the dependence on parameters of differential equations are directly applicable to the study of flows of vector fields on differential manifolds, etc.
Analysis Volume IV introduces the reader to functional analysis (integration, Hilbert spaces, harmonic analysis in group theory) and to the methods of the theory of modular functions (theta and L series, elliptic functions, use of the Lie algebra of SL2). As in volumes I to III, the inimitable style of the author is recognizable here too, not only because of his refusal to write in the compact style used nowadays in many textbooks. The first part (Integration), a wise combination of mathematics said to be `modern' and `classical', is universally useful whereas the second part leads the reader towards a very active and specialized field of research, with possibly broad generalizations.
This new approach to real analysis stresses the use of the subject with respect to applications, i.e., how the principles and theory of real analysis can be applied in a variety of settings in subjects ranging from Fourier series and polynomial approximation to discrete dynamical systems and nonlinear optimization. Users will be prepared for more intensive work in each topic through these applications and their accompanying exercises. This book is appropriate for math enthusiasts with a prior knowledge of both calculus and linear algebra.
Integration theory and general topology form the core of this textbook for a first-year graduate course in real analysis. After the foundational material in the first chapter (construction of the reals, cardinal and ordinal numbers, Zorn's lemma and transfinite induction), measure, integral and topology are introduced and developed as recurrent themes of increasing depth. The treatment of integration theory is quite complete (including the convergence theorems, product measure, absolute continuity, the Radon-Nikodym theorem, and Lebesgue's theory of differentiation and primitive functions), while topology, predominantly metric, plays a supporting role. In the later chapters, integral and topology coalesce in topics such as function spaces, the Riesz representation theorem, existence theorems for an ordinary differential equation, and integral operators with continuous kernel function. In particular, the material on function spaces lays a firm foundation for the study of functional analysis.
The approach here relies on two beliefs. The first is that almost nobody fully understands calculus the first time around. The second is that graphing calculators can be used to simplify the theory of limits for students. This book presents the theoretical pieces of introductory calculus, using appropriate technology, in a style suitable to accompany almost any first calculus text. It offers a large range of increasingly sophisticated examples and problems to build an understanding of the notion of limit and other theoretical concepts. Aimed at students who will study fields in which the understanding of calculus as a tool is not sufficient, the text uses the "spiral approach" of teaching, returning again and again to difficult topics, anticipating such returns across the calculus courses in preparation for the first analysis course. Suitable as the "content" text for a transition to upper level mathematics course.
"Concrete Functional Calculus" focuses primarily on differentiability of some nonlinear operators on functions or pairs of functions. This includes composition of two functions, and the product integral, taking a matrix- or operator-valued coefficient function into a solution of a system of linear differential equations with the given coefficients. In this book existence and uniqueness of solutions are proved under suitable assumptions for nonlinear integral equations with respect to possibly discontinuous functions having unbounded variation. Key features and topics: Extensive usage of p-variation of functions, and applications to stochastic processes. This work will serve as a thorough reference on its main topics for researchers and graduate students with a background in real analysis and, for Chapter 12, in probability."
This book gives a general definition of the (abstract) integral, using the Daniell method. A most welcome consequence of this approach is the fact that integration theory on Hausdorff topological spaces appears simply to be a special case of abstract integration theory. The most important tool for the development of the abstract theory is the theory of vector lattices which is presented here in great detail. Its consequent application not only yields new insight into integration theory, but also simplifies many proofs. For example, the space of real-valued measures on a delta-ring turns out to be an order complete vector lattice, which permits a coherent development of the theory and the elegant derivation of many classical and new results. The exercises occupy an important part of the volume. In addition to their usual role, some of them treat separate topics related to vector lattices and integration theory. Audience: This work will be of interest to graduate-level students and researchers with a background in real analysis, whose work involves (abstract) measure and integration, vector lattices, real functions of a real variable, probability theory and integral transforms.
'Et moi *...* si j'avait su comment en rcvenir. One service mathematics has rendered the je n'y serais point alle.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canistcr labelled 'discarded non- sense'. The scries is divergent; therefore we may be Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non- linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics ...'; 'One service logic has rendered com- puter science ...'; 'One service category theory has rendered mathematics ...'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series. |
You may like...
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,532
Discovery Miles 35 320
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,399
Discovery Miles 33 990
Real Analysis with an Introduction to…
Don Hong, Jian zhong Wang, …
Hardcover
R2,200
Discovery Miles 22 000
Analysis, Partial Differential Equations…
Alberto Cialdea, Flavia Lanzara, …
Hardcover
R4,073
Discovery Miles 40 730
Fractional Calculus: Models And…
Dumitru Baleanu, Kai Diethelm, …
Hardcover
R3,700
Discovery Miles 37 000
|