Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
The book offers an initiation into mathematical reasoning, and into the mathematician's mind-set and reflexes. Specifically, the fundamental operations of calculus--differentiation and integration of functions and the summation of infinite series--are built, with logical continuity (i.e., "rigor"), starting from the real number system. The first chapter sets down precise axioms for the real number system, from which all else is derived using the logical tools summarized in an Appendix. The discussion of the "fundamental theorem of calculus," the focal point of the book, especially thorough. The concluding chapter establishes a significant beachhead in the theory of the Lebesgue integral by elementary means.
This superb and self-contained work is an introductory presentation of basic ideas, structures, and results of differential and integral calculus for functions of several variables. The wide range of topics covered include the differential calculus of several variables, including differential calculus of Banach spaces, the relevant results of Lebesgue integration theory, and systems and stability of ordinary differential equations. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This text motivates the study of the analysis of several variables with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering.
Current research and applications in nonlinear analysis influenced by Haim Brezis and Louis Nirenberg are presented in this book by leading mathematicians. Each contribution aims to broaden reader's understanding of theories, methods, and techniques utilized to solve significant problems. Topics include: Sobolev Spaces Maximal monotone operators A theorem of Brezis-Nirenberg Operator-norm convergence of the Trotter product formula Elliptic operators with infinitely many variables Pseudo-and quasiconvexities for nonsmooth function Anisotropic surface measures Eulerian and Lagrangian variables Multiple periodic solutions of Lagrangian systems Porous medium equation Nondiscrete Lassonde-Revalski principle Graduate students and researchers in mathematics, physics, engineering, and economics will find this book a useful reference for new techniques and research areas. Haim Brezis and Louis Nirenberg's fundamental research in nonlinear functional analysis and nonlinear partial differential equations along with their years of teaching and training students have had a notable impact in the field.
Typically, undergraduates see real analysis as one of the most difficult courses that a mathematics major is required to take. The main reason for this perception is twofold: Students must comprehend new abstract concepts and learn to deal with these concepts on a level of rigor and proof not previously encountered. A key challenge for an instructor of real analysis is to find a way to bridge the gap between a student's preparation and the mathematical skills that are required to be successful in such a course. Real Analysis: With Proof Strategies provides a resolution to the "bridging-the-gap problem." The book not only presents the fundamental theorems of real analysis, but also shows the reader how to compose and produce the proofs of these theorems. The detail, rigor, and proof strategies offered in this textbook will be appreciated by all readers. Features Explicitly shows the reader how to produce and compose the proofs of the basic theorems in real analysis Suitable for junior or senior undergraduates majoring in mathematics.
This "Select a" contains approximately two thirds of the papers my 1932 to 1994. These papers are divided into four fields. father wrote from The first volume contains the papers on 1) Summability and Number Theory and 2) Interpolation. The second volume contains the fields 3) Real and Functional Analysis and 4) Approximation Theory. Each of these four groups of papers is introduced by a review of the contents and significance, respectively of the impact of these papers. The first volume contains, in addition, an autobiography, a complete list of publications, a list of doctoral students and four unpublished essays on mathematics in general: a) A report on the University of Leningrad b) On the work of the mathematical mind c) Proofs in Mathematics d) About Mathematical books. The report on the University of Leningrad, written in the late '40's, is a unique historical document which is still of current interest for several reasons. It is of interest for professional reasons since it contains a com plete description of a mathematics majors' curriculum through his entire course of studies. From it one can see both the changes and invariants of course material as well as the students' course load. Then one can also see the consequences of admittedly extreme political intervention in uni versity affairs. Today we use the term "politically correct," but in those times being politically correct was a matter of life and death."
The rapid development of set theory in the last fifty years, mainly by obtaining plenty of independence results, strongly influenced an understanding of the structure of the real line. This book is devoted to the study of the real line and its subsets taking into account the recent results of set theory. Whenever possible the presentation is done without the full axiom of choice. Since the book is intended to be self-contained, all necessary results of set theory, topology, measure theory, and descriptive set theory are revisited with the purpose of eliminating superfluous use of an axiom of choice. The duality of measure and category is studied in a detailed manner. Several statements pertaining to properties of the real line are shown to be undecidable in set theory. The metamathematics behind set theory is shortly explained in the appendix. Each section contains a series of exercises with additional results.
Our knowledge of objects of complex and potential analysis has been enhanced recently by ideas and constructions of theoretical and mathematical physics, such as quantum field theory, nonlinear hydrodynamics, material science. These are some of the themes of this refereed collection of papers, which grew out of the first conference of the European Science Foundation Networking Programme 'Harmonic and Complex Analysis and Applications' held in Norway 2007.
Fourier analysis is a subject that was born in physics but grew up in mathematics. Now it is part of the standard repertoire for mathematicians, physicists and engineers. This diversity of interest is often overlooked, but in this much-loved book, Tom Koerner provides a shop window for some of the ideas, techniques and elegant results of Fourier analysis, and for their applications. These range from number theory, numerical analysis, control theory and statistics, to earth science, astronomy and electrical engineering. The prerequisites are few (a reader with knowledge of second- or third-year undergraduate mathematics should have no difficulty following the text), and the style is lively and entertaining. This edition of Koerner's 1989 text includes a foreword written by Professor Terence Tao introducing it to a new generation of fans.
This is a rigorous introduction to real analysis for undergraduate students, starting from the axioms for a complete ordered field and a little set theory. The book avoids any preconceptions about the real numbers and takes them to be nothing but the elements of a complete ordered field. All of the standard topics are included, as well as a proper treatment of the trigonometric functions, which many authors take for granted. The final chapters of the book provide a gentle, example-based introduction to metric spaces with an application to differential equations on the real line. The author's exposition is concise and to the point, helping students focus on the essentials. Over 200 exercises of varying difficulty are included, many of them adding to the theory in the text. The book is perfect for second-year undergraduates and for more advanced students who need a foundation in real analysis.
This text presents differential forms from a geometric perspective accessible at the undergraduate level. It begins with basic concepts such as partial differentiation and multiple integration and gently develops the entire machinery of differential forms. The subject is approached with the idea that complex concepts can be built up by analogy from simpler cases, which, being inherently geometric, often can be best understood visually. Each new concept is presented with a natural picture that students can easily grasp. Algebraic properties then follow. The book contains excellent motivation, numerous illustrations and solutions to selected problems.
The subject of special functions is often presented as a collection of disparate results, rarely organized in a coherent way. This book emphasizes general principles that unify and demarcate the subjects of study. The authors' main goals are to provide clear motivation, efficient proofs, and original references for all of the principal results. The book covers standard material, but also much more. It shows how much of the subject can be traced back to two equations - the hypergeometric equation and confluent hypergeometric equation - and it details the ways in which these equations are canonical and special. There is extended coverage of orthogonal polynomials, including connections to approximation theory, continued fractions, and the moment problem, as well as an introduction to new asymptotic methods. There are also chapters on Meijer G-functions and elliptic functions. The final chapter introduces Painleve transcendents, which have been termed the 'special functions of the twenty-first century'.
The Dirichlet space is one of the three fundamental Hilbert spaces of holomorphic functions on the unit disk. It boasts a rich and beautiful theory, yet at the same time remains a source of challenging open problems and a subject of active mathematical research. This book is the first systematic account of the Dirichlet space, assembling results previously only found in scattered research articles, and improving upon many of the proofs. Topics treated include: the Douglas and Carleson formulas for the Dirichlet integral, reproducing kernels, boundary behaviour and capacity, zero sets and uniqueness sets, multipliers, interpolation, Carleson measures, composition operators, local Dirichlet spaces, shift-invariant subspaces, and cyclicity. Special features include a self-contained treatment of capacity, including the strong-type inequality. The book will be valuable to researchers in function theory, and with over 100 exercises it is also suitable for self-study by graduate students.
This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales. First proposed by S. Hilger, the time scale theory-a unified view of continuous and discrete analysis-has been widely used to study various classes of dynamic equations and models in real-world applications. Measure theory based on time scales, in its turn, is of great power in analyzing functions on time scales or hybrid domains. As a new and exciting type of mathematics-and more comprehensive and versatile than the traditional theories of differential and difference equations-, the time scale theory can precisely depict the continuous-discrete hybrid processes and is an optimal way forward for accurate mathematical modeling in applied sciences such as physics, chemical technology, population dynamics, biotechnology, and economics and social sciences. Graduate students and researchers specializing in general dynamic equations on time scales can benefit from this work, fostering interest and further research in the field. It can also serve as reference material for undergraduates interested in dynamic equations on time scales. Prerequisites include familiarity with functional analysis, measure theory, and ordinary differential equations.
This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those that are involved with Real Analysis in disciplines such as mathematics, engineering, technology, and other physical sciences. It provides a good balance while dealing with the basic and essential topics that enable the reader to learn the more advanced topics easily. It includes many examples and end of chapter exercises including hints for solutions in several critical cases. The book is ideal for students, instructors, as well as those doing research in areas requiring a basic knowledge of Real Analysis. Those more advanced in the field will also find the book useful to refresh their knowledge of the topic. Features Includes basic and essential topics of real analysis Adopts a reasonable approach to make the subject easier to learn Contains many solved examples and exercise at the end of each chapter Presents a quick review of the fundamentals of set theory Covers the real number system Discusses the basic concepts of metric spaces and complete metric spaces
Analysis in spaces with no a priori smooth structure has progressed to include concepts from the first order calculus. In particular, there have been important advances in understanding the infinitesimal versus global behavior of Lipschitz functions and quasiconformal mappings in rather general settings; abstract Sobolev space theories have been instrumental in this development. The purpose of this book is to communicate some of the recent work in the area while preparing the reader to study more substantial, related articles. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is relatively recent and appears for the first time in book format. There are plenty of exercises. The book is well suited for self-study, or as a text in a graduate course or seminar. The material is relevant to anyone who is interested in analysis and geometry in nonsmooth settings.
Mathematical analysis serves as a common foundation for many research areas of pure and applied mathematics. It is also an important and powerful tool used in many other fields of science, including physics, chemistry, biology, engineering, finance, and economics. In this book, some basic theories of analysis are presented, including metric spaces and their properties, limit of sequences, continuous function, differentiation, Riemann integral, uniform convergence, and series.After going through a sequence of courses on basic calculus and linear algebra, it is desirable for one to spend a reasonable length of time (ideally, say, one semester) to build an advanced base of analysis sufficient for getting into various research fields other than analysis itself, and/or stepping into more advanced levels of analysis courses (such as real analysis, complex analysis, differential equations, functional analysis, stochastic analysis, amongst others). This book is written to meet such a demand. Readers will find the treatment of the material is as concise as possible, but still maintaining all the necessary details.
Real Analysis Through Modern Infinitesimals provides a course on mathematical analysis based on Internal Set Theory (IST) introduced by Edward Nelson in 1977. After motivating IST through an ultrapower construction, the book provides a careful development of this theory representing each external class as a proper class. This foundational discussion, which is presented in the first two chapters, includes an account of the basic internal and external properties of the real number system as an entity within IST. In its remaining fourteen chapters, the book explores the consequences of the perspective offered by IST as a wide range of real analysis topics are surveyed. The topics thus developed begin with those usually discussed in an advanced undergraduate analysis course and gradually move to topics that are suitable for more advanced readers. This book may be used for reference, self-study, and as a source for advanced undergraduate or graduate courses.
A typical source of mistakes that frequently lead to a wrong or incomplete solution for the antiderivative of a given real function of one real variable is a misuse of the technique of change of variable. The increasing implementation of software in apparently mechanic tasks such as the calculation of antiderivatives has not improved the situation, yet those software packages issue generic warnings such as "the answer's is not guaranteed to be continuous" or "the solution might be only valid for parts of the function". The practical meaning of those vague machine messages is clearly envisaged in this book, which shows how to handle the technique of change of variable in order to provide correct solutions. This book is monographically focused on elementary antidifferentiation and reasonably self-contained, yet it is written in a "hand-book" style: it has plenty of examples and graphics in an increasing level of difficulty; the most standard changes of variable are studied and the hardest theoretic parts are included in a final Appendix. Each practical chapter has a list of exercises and solutions. This book is intended for instructors and university students of Mathematics of first and second year.
This two-volume text in harmonic analysis introduces a wealth of analytical results and techniques. It is largely self-contained and useful to graduates and researchers in pure and applied analysis. Numerous exercises and problems make the text suitable for self-study and the classroom alike. The first volume starts with classical one-dimensional topics: Fourier series; harmonic functions; Hilbert transform. Then the higher-dimensional Calderon-Zygmund and Littlewood-Paley theories are developed. Probabilistic methods and their applications are discussed, as are applications of harmonic analysis to partial differential equations. The volume concludes with an introduction to the Weyl calculus. The second volume goes beyond the classical to the highly contemporary and focuses on multilinear aspects of harmonic analysis: the bilinear Hilbert transform; Coifman-Meyer theory; Carleson's resolution of the Lusin conjecture; Calderon's commutators and the Cauchy integral on Lipschitz curves. The material in this volume has not previously appeared together in book form.
The book targets undergraduate and postgraduate mathematics students and helps them develop a deep understanding of mathematical analysis. Designed as a first course in real analysis, it helps students learn how abstract mathematical analysis solves mathematical problems that relate to the real world. As well as providing a valuable source of inspiration for contemporary research in mathematics, the book helps students read, understand and construct mathematical proofs, develop their problem-solving abilities and comprehend the importance and frontiers of computer facilities and much more. It offers comprehensive material for both seminars and independent study for readers with a basic knowledge of calculus and linear algebra. The first nine chapters followed by the appendix on the Stieltjes integral are recommended for graduate students studying probability and statistics, while the first eight chapters followed by the appendix on dynamical systems will be of use to students of biology and environmental sciences. Chapter 10 and the appendixes are of interest to those pursuing further studies at specialized advanced levels. Exercises at the end of each section, as well as commentaries at the end of each chapter, further aid readers' understanding. The ultimate goal of the book is to raise awareness of the fine architecture of analysis and its relationship with the other fields of mathematics.
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock-Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers.It is widely acknowledged that the biggest difficulty in defining a Henstock-Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of 'intervals' in the abstract setting. In this book the author shows a creative and innovative way of defining 'intervals' in measure spaces, and prove many interesting and important results including the well-known Radon-Nikodym theorem.
The book contains a rigorous exposition of calculus of a single real variable. It covers the standard topics of an introductory analysis course, namely, functions, continuity, differentiability, sequences and series of numbers, sequences and series of functions, and integration. A direct treatment of the Lebesgue integral, based solely on the concept of absolutely convergent series, is presented, which is a unique feature of a textbook at this level. The standard material is complemented by topics usually not found in comparable textbooks, for example, elementary functions are rigorously defined and their properties are carefully derived and an introduction to Fourier series is presented as an example of application of the Lebesgue integral.The text is for a post-calculus course for students majoring in mathematics or mathematics education. It will provide students with a solid background for further studies in analysis, deepen their understanding of calculus, and provide sound training in rigorous mathematical proof.
Based on the authors' combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations. With more than 100 pictures, the book creates interest in real analysis by encouraging students to think geometrically. Each difficult proof is prefaced by a strategy and explanation of how the strategy is translated into rigorous and precise proofs. The authors then explain the mystery and role of inequalities in analysis to train students to arrive at estimates that will be useful for proofs. They highlight the role of the least upper bound property of real numbers, which underlies all crucial results in real analysis. In addition, the book demonstrates analysis as a qualitative as well as quantitative study of functions, exposing students to arguments that fall under hard analysis. Although there are many books available on this subject, students often find it difficult to learn the essence of analysis on their own or after going through a course on real analysis. Written in a conversational tone, this book explains the hows and whys of real analysis and provides guidance that makes readers think at every stage.
This second edition introduces an additional set of new mathematical problems with their detailed solutions in real analysis. It also provides numerous improved solutions to the existing problems from the previous edition, and includes very useful tips and skills for the readers to master successfully. There are three more chapters that expand further on the topics of Bernoulli numbers, differential equations and metric spaces.Each chapter has a summary of basic points, in which some fundamental definitions and results are prepared. This also contains many brief historical comments for some significant mathematical results in real analysis together with many references.Problems and Solutions in Real Analysis can be treated as a collection of advanced exercises by undergraduate students during or after their courses of calculus and linear algebra. It is also instructive for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the Prime Number Theorem through several exercises. This volume is also suitable for non-experts who wish to understand mathematical analysis. |
You may like...
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,720
Discovery Miles 37 200
Modern Mathematical Tools and Techniques…
Leandro Pardo, Narayanaswamy Balakrishnan, …
Hardcover
R5,734
Discovery Miles 57 340
Advances in Non-Archimedean Analysis and…
W. A. Zuniga-Galindo, Bourama Toni
Hardcover
R3,311
Discovery Miles 33 110
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,581
Discovery Miles 35 810
|