![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
This book deals with the development of Diophantine problems starting with Thue's path breaking result and culminating in Roth's theorem with applications. It discusses classical results including Hermite-Lindemann-Weierstrass theorem, Gelfond-Schneider theorem, Schmidt's subspace theorem and more. It also includes two theorems of Ramachandra which are not widely known and other interesting results derived on the values of Weierstrass elliptic function. Given the constantly growing number of applications of linear forms in logarithms, it is becoming increasingly important for any student wanting to work in this area to know the proofs of Baker's original results. This book presents Baker's original results in a format suitable for graduate students, with a focus on presenting the content in an accessible and simple manner. Each student-friendly chapter concludes with selected problems in the form of "Exercises" and interesting information presented as "Notes," intended to spark readers' curiosity.
Advanced Data Analysis and Modeling in Chemical Engineering provides the mathematical foundations of different areas of chemical engineering and describes typical applications. The book presents the key areas of chemical engineering, their mathematical foundations, and corresponding modeling techniques. Modern industrial production is based on solid scientific methods, many of which are part of chemical engineering. To produce new substances or materials, engineers must devise special reactors and procedures, while also observing stringent safety requirements and striving to optimize the efficiency jointly in economic and ecological terms. In chemical engineering, mathematical methods are considered to be driving forces of many innovations in material design and process development.
Poincare-Andronov-Melnikov Analysis for Non-Smooth Systems is devoted to the study of bifurcations of periodic solutions for general n-dimensional discontinuous systems. The authors study these systems under assumptions of transversal intersections with discontinuity-switching boundaries. Furthermore, bifurcations of periodic sliding solutions are studied from sliding periodic solutions of unperturbed discontinuous equations, and bifurcations of forced periodic solutions are also investigated for impact systems from single periodic solutions of unperturbed impact equations. In addition, the book presents studies for weakly coupled discontinuous systems, and also the local asymptotic properties of derived perturbed periodic solutions. The relationship between non-smooth systems and their continuous approximations is investigated as well. Examples of 2-, 3- and 4-dimensional discontinuous ordinary differential equations and impact systems are given to illustrate the theoretical results. The authors use so-called discontinuous Poincare mapping which maps a point to its position after one period of the periodic solution. This approach is rather technical, but it does produce results for general dimensions of spatial variables and parameters as well as the asymptotical results such as stability, instability, and hyperbolicity.
This monograph establishes a theory of classification and translation closedness of time scales, a topic that was first studied by S. Hilger in 1988 to unify continuous and discrete analysis. The authors develop a theory of translation function on time scales that contains (piecewise) almost periodic functions, (piecewise) almost automorphic functions and their related generalization functions (e.g., pseudo almost periodic functions, weighted pseudo almost automorphic functions, and more). Against the background of dynamic equations, these function theories on time scales are applied to study the dynamical behavior of solutions for various types of dynamic equations on hybrid domains, including evolution equations, discontinuous equations and impulsive integro-differential equations. The theory presented allows many useful applications, such as in the Nicholson`s blowfiles model; the Lasota-Wazewska model; the Keynesian-Cross model; in those realistic dynamical models with a more complex hibrid domain, considered under different types of translation closedness of time scales; and in dynamic equations on mathematical models which cover neural networks. This book provides readers with the theoretical background necessary for accurate mathematical modeling in physics, chemical technology, population dynamics, biotechnology and economics, neural networks, and social sciences.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the second in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University, Rostov-on-Don, Russia. This volume focuses on mathematical methods and applications of probability and statistics in the context of general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multi-parameter objects required when considering operators and objects with variable parameters.
Analysis in spaces with no a priori smooth structure has progressed to include concepts from the first order calculus. In particular, there have been important advances in understanding the infinitesimal versus global behavior of Lipschitz functions and quasiconformal mappings in rather general settings; abstract Sobolev space theories have been instrumental in this development. The purpose of this book is to communicate some of the recent work in the area while preparing the reader to study more substantial, related articles. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is relatively recent and appears for the first time in book format. There are plenty of exercises. The book is well suited for self-study, or as a text in a graduate course or seminar. The material is relevant to anyone who is interested in analysis and geometry in nonsmooth settings.
This monograph provides a unified and comprehensive treatment of an order-theoretic fixed point theory in partially ordered sets and its various useful interactions with topological structures. The material progresses systematically, by presenting the preliminaries before moving to more advanced topics. In the treatment of the applications a wide range of mathematical theories and methods from nonlinear analysis and integration theory are applied; an outline of which has been given an appendix chapter to make the book self-contained. Graduate students and researchers in nonlinear analysis, pure and applied mathematics, game theory and mathematical economics will find this book useful.
This monograph is devoted to developing a theory of combined measure and shift invariance of time scales with the related applications to shift functions and dynamic equations. The study of shift closeness of time scales is significant to investigate the shift functions such as the periodic functions, the almost periodic functions, the almost automorphic functions, and their generalizations with many relevant applications in dynamic equations on arbitrary time scales. First proposed by S. Hilger, the time scale theory-a unified view of continuous and discrete analysis-has been widely used to study various classes of dynamic equations and models in real-world applications. Measure theory based on time scales, in its turn, is of great power in analyzing functions on time scales or hybrid domains. As a new and exciting type of mathematics-and more comprehensive and versatile than the traditional theories of differential and difference equations-, the time scale theory can precisely depict the continuous-discrete hybrid processes and is an optimal way forward for accurate mathematical modeling in applied sciences such as physics, chemical technology, population dynamics, biotechnology, and economics and social sciences. Graduate students and researchers specializing in general dynamic equations on time scales can benefit from this work, fostering interest and further research in the field. It can also serve as reference material for undergraduates interested in dynamic equations on time scales. Prerequisites include familiarity with functional analysis, measure theory, and ordinary differential equations.
This book provides an introduction to basic topics in Real Analysis and makes the subject easily understandable to all learners. The book is useful for those that are involved with Real Analysis in disciplines such as mathematics, engineering, technology, and other physical sciences. It provides a good balance while dealing with the basic and essential topics that enable the reader to learn the more advanced topics easily. It includes many examples and end of chapter exercises including hints for solutions in several critical cases. The book is ideal for students, instructors, as well as those doing research in areas requiring a basic knowledge of Real Analysis. Those more advanced in the field will also find the book useful to refresh their knowledge of the topic. Features Includes basic and essential topics of real analysis Adopts a reasonable approach to make the subject easier to learn Contains many solved examples and exercise at the end of each chapter Presents a quick review of the fundamentals of set theory Covers the real number system Discusses the basic concepts of metric spaces and complete metric spaces
This is the first volume of the two-volume book on real and complex analysis. This volume is an introduction to measure theory and Lebesgue measure where the Riesz representation theorem is used to construct Lebesgue measure. Intended for undergraduate students of mathematics and engineering, it covers the essential analysis that is needed for the study of functional analysis, developing the concepts rigorously with sufficient detail and with minimum prior knowledge of the fundamentals of advanced calculus required. Divided into three chapters, it discusses exponential and measurable functions, Riesz representation theorem, Borel and Lebesgue measure, -spaces, Riesz-Fischer theorem, Vitali-Caratheodory theorem, the Fubini theorem, and Fourier transforms. Further, it includes extensive exercises and their solutions with each concept. The book examines several useful theorems in the realm of real and complex analysis, most of which are the work of great mathematicians of the 19th and 20th centuries.
Mathematical analysis serves as a common foundation for many research areas of pure and applied mathematics. It is also an important and powerful tool used in many other fields of science, including physics, chemistry, biology, engineering, finance, and economics. In this book, some basic theories of analysis are presented, including metric spaces and their properties, limit of sequences, continuous function, differentiation, Riemann integral, uniform convergence, and series.After going through a sequence of courses on basic calculus and linear algebra, it is desirable for one to spend a reasonable length of time (ideally, say, one semester) to build an advanced base of analysis sufficient for getting into various research fields other than analysis itself, and/or stepping into more advanced levels of analysis courses (such as real analysis, complex analysis, differential equations, functional analysis, stochastic analysis, amongst others). This book is written to meet such a demand. Readers will find the treatment of the material is as concise as possible, but still maintaining all the necessary details.
This volume presents significant advances in a number of theories and problems of Mathematical Analysis and its applications in disciplines such as Analytic Inequalities, Operator Theory, Functional Analysis, Approximation Theory, Functional Equations, Differential Equations, Wavelets, Discrete Mathematics and Mechanics. The contributions focus on recent developments and are written by eminent scientists from the international mathematical community. Special emphasis is given to new results that have been obtained in the above mentioned disciplines in which Nonlinear Analysis plays a central role. Some review papers published in this volume will be particularly useful for a broader readership in Mathematical Analysis, as well as for graduate students. An attempt is given to present all subjects in this volume in a unified and self-contained manner, to be particularly useful to the mathematical community.
A typical source of mistakes that frequently lead to a wrong or incomplete solution for the antiderivative of a given real function of one real variable is a misuse of the technique of change of variable. The increasing implementation of software in apparently mechanic tasks such as the calculation of antiderivatives has not improved the situation, yet those software packages issue generic warnings such as "the answer's is not guaranteed to be continuous" or "the solution might be only valid for parts of the function". The practical meaning of those vague machine messages is clearly envisaged in this book, which shows how to handle the technique of change of variable in order to provide correct solutions. This book is monographically focused on elementary antidifferentiation and reasonably self-contained, yet it is written in a "hand-book" style: it has plenty of examples and graphics in an increasing level of difficulty; the most standard changes of variable are studied and the hardest theoretic parts are included in a final Appendix. Each practical chapter has a list of exercises and solutions. This book is intended for instructors and university students of Mathematics of first and second year.
This expanded second edition presents the fundamentals and touchstone results of real analysis in full rigor, but in a style that requires little prior familiarity with proofs or mathematical language. The text is a comprehensive and largely self-contained introduction to the theory of real-valued functions of a real variable. The chapters on Lebesgue measure and integral have been rewritten entirely and greatly improved. They now contain Lebesgue's differentiation theorem as well as his versions of the Fundamental Theorem(s) of Calculus. With expanded chapters, additional problems, and an expansive solutions manual, Basic Real Analysis, Second Edition is ideal for senior undergraduates and first-year graduate students, both as a classroom text and a self-study guide. Reviews of first edition: The book is a clear and well-structured introduction to real analysis aimed at senior undergraduate and beginning graduate students. The prerequisites are few, but a certain mathematical sophistication is required. ... The text contains carefully worked out examples which contribute motivating and helping to understand the theory. There is also an excellent selection of exercises within the text and problem sections at the end of each chapter. In fact, this textbook can serve as a source of examples and exercises in real analysis. -Zentralblatt MATH The quality of the exposition is good: strong and complete versions of theorems are preferred, and the material is organised so that all the proofs are of easily manageable length; motivational comments are helpful, and there are plenty of illustrative examples. The reader is strongly encouraged to learn by doing: exercises are sprinkled liberally throughout the text and each chapter ends with a set of problems, about 650 in all, some of which are of considerable intrinsic interest. -Mathematical Reviews [This text] introduces upper-division undergraduate or first-year graduate students to real analysis.... Problems and exercises abound; an appendix constructs the reals as the Cauchy (sequential) completion of the rationals; references are copious and judiciously chosen; and a detailed index brings up the rear. -CHOICE Reviews
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
With the success of its previous editions, "Principles of Real Analysis, Third Edition," continues to introduce students to the fundamentals of the theory of measure and functional analysis. In this thorough update, the authors have included a new chapter on Hilbert spaces as well as integrating over 150 new exercises throughout. The new edition covers the basic theory of integration in a clear, well-organized manner, using an imaginative and highly practical synthesis of the "Daniell Method" and the measure theoretic approach. Students will be challenged by the more than 600 exercises contained in the book. Topics are illustrated by many varied examples, and they provide clear connections between real analysis and functional analysis. * Gives a unique presentation of integration theory
This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author's engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.
A revised and expanded second edition of Reiter's classic text, this book deals with various developments in analysis centring around the fundamental work of Wiener, Carleman, and Weil. It starts with the classical theory of Fourier transforms in euclidean space, continues with a study of certain general function algebras, and then discusses functions defined on locally compact groups. The book gives a systematic introduction to these topics and endeavours to provide tools for further research. The new edition contains relevent material that was unavailable when the first edition was published.
This book offers to the reader a self-contained treatment and systematic exposition of the real-valued theory of a nonabsolute integral on measure spaces. It is an introductory textbook to Henstock-Kurzweil type integrals defined on abstract spaces. It contains both classical and original results that are accessible to a large class of readers.It is widely acknowledged that the biggest difficulty in defining a Henstock-Kurzweil integral beyond Euclidean spaces is the definition of a set of measurable sets which will play the role of 'intervals' in the abstract setting. In this book the author shows a creative and innovative way of defining 'intervals' in measure spaces, and prove many interesting and important results including the well-known Radon-Nikodym theorem.
Based on the authors' combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations. With more than 100 pictures, the book creates interest in real analysis by encouraging students to think geometrically. Each difficult proof is prefaced by a strategy and explanation of how the strategy is translated into rigorous and precise proofs. The authors then explain the mystery and role of inequalities in analysis to train students to arrive at estimates that will be useful for proofs. They highlight the role of the least upper bound property of real numbers, which underlies all crucial results in real analysis. In addition, the book demonstrates analysis as a qualitative as well as quantitative study of functions, exposing students to arguments that fall under hard analysis. Although there are many books available on this subject, students often find it difficult to learn the essence of analysis on their own or after going through a course on real analysis. Written in a conversational tone, this book explains the hows and whys of real analysis and provides guidance that makes readers think at every stage.
The book contains a rigorous exposition of calculus of a single real variable. It covers the standard topics of an introductory analysis course, namely, functions, continuity, differentiability, sequences and series of numbers, sequences and series of functions, and integration. A direct treatment of the Lebesgue integral, based solely on the concept of absolutely convergent series, is presented, which is a unique feature of a textbook at this level. The standard material is complemented by topics usually not found in comparable textbooks, for example, elementary functions are rigorously defined and their properties are carefully derived and an introduction to Fourier series is presented as an example of application of the Lebesgue integral.The text is for a post-calculus course for students majoring in mathematics or mathematics education. It will provide students with a solid background for further studies in analysis, deepen their understanding of calculus, and provide sound training in rigorous mathematical proof.
Calculus Without Derivatives expounds the foundations and recent advances in nonsmooth analysis, a powerful compound of mathematical tools that obviates the usual smoothness assumptions. This textbook also provides significant tools and methods towards applications, in particular optimization problems. Whereas most books on this subject focus on a particular theory, this text takes a general approach including all main theories. In order to be self-contained, the book includes three chapters of preliminary material, each of which can be used as an independent course if needed. The first chapter deals with metric properties, variational principles, decrease principles, methods of error bounds, calmness and metric regularity. The second one presents the classical tools of differential calculus and includes a section about the calculus of variations. The third contains a clear exposition of convex analysis.
Motivated by recent increased activity of research on time scales, the book provides a systematic approach to the study of the qualitative theory of boundedness, periodicity and stability of Volterra integro-dynamic equations on time scales. Researchers and graduate students who are interested in the method of Lyapunov functions/functionals, in the study of boundedness of solutions, in the stability of the zero solution, or in the existence of periodic solutions should be able to use this book as a primary reference and as a resource of latest findings. This book contains many open problems and should be of great benefit to those who are pursuing research in dynamical systems or in Volterra integro-dynamic equations on time scales with or without delays. Great efforts were made to present rigorous and detailed proofs of theorems. The book should serve as an encyclopedia on the construction of Lyapunov functionals in analyzing solutions of dynamical systems on time scales. The book is suitable for a graduate course in the format of graduate seminars or as special topics course on dynamical systems. The book should be of interest to investigators in biology, chemistry, economics, engineering, mathematics and physics.
This second edition introduces an additional set of new mathematical problems with their detailed solutions in real analysis. It also provides numerous improved solutions to the existing problems from the previous edition, and includes very useful tips and skills for the readers to master successfully. There are three more chapters that expand further on the topics of Bernoulli numbers, differential equations and metric spaces.Each chapter has a summary of basic points, in which some fundamental definitions and results are prepared. This also contains many brief historical comments for some significant mathematical results in real analysis together with many references.Problems and Solutions in Real Analysis can be treated as a collection of advanced exercises by undergraduate students during or after their courses of calculus and linear algebra. It is also instructive for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the Prime Number Theorem through several exercises. This volume is also suitable for non-experts who wish to understand mathematical analysis.
This second edition introduces an additional set of new mathematical problems with their detailed solutions in real analysis. It also provides numerous improved solutions to the existing problems from the previous edition, and includes very useful tips and skills for the readers to master successfully. There are three more chapters that expand further on the topics of Bernoulli numbers, differential equations and metric spaces.Each chapter has a summary of basic points, in which some fundamental definitions and results are prepared. This also contains many brief historical comments for some significant mathematical results in real analysis together with many references.Problems and Solutions in Real Analysis can be treated as a collection of advanced exercises by undergraduate students during or after their courses of calculus and linear algebra. It is also instructive for graduate students who are interested in analytic number theory. Readers will also be able to completely grasp a simple and elementary proof of the Prime Number Theorem through several exercises. This volume is also suitable for non-experts who wish to understand mathematical analysis. |
You may like...
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,532
Discovery Miles 35 320
Cauchy's Cours d'analyse - An Annotated…
Robert E. Bradley, C. Edward Sandifer
Hardcover
R4,769
Discovery Miles 47 690
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,399
Discovery Miles 33 990
Discrete Fractional Calculus
Christopher Goodrich, Allan C. Peterson
Hardcover
R2,566
Discovery Miles 25 660
Fractional Calculus: Models And…
Dumitru Baleanu, Kai Diethelm, …
Hardcover
R3,700
Discovery Miles 37 000
Advanced Calculus - A Transition to…
Thomas P. Dence, Joseph B. Dence
Hardcover
R2,113
Discovery Miles 21 130
Fixed Point Theory in Metric Type Spaces
Ravi P. Agarwal, Erdal Karapinar, …
Hardcover
R3,836
Discovery Miles 38 360
|