![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
This concise, well-written handbook provides a distillation of real variable theory with a particular focus on the subject's significant applications to differential equations and Fourier analysis. Ample examples and brief explanations---with very few proofs and little axiomatic machinery---are used to highlight all the major results of real analysis, from the basics of sequences and series to the more advanced concepts of Taylor and Fourier series, Baire Category, and the Weierstrass Approximation Theorem. Replete with realistic, meaningful applications to differential equations, boundary value problems, and Fourier analysis, this unique work is a practical, hands-on manual of real analysis that is ideal for physicists, engineers, economists, and others who wish to use the fruits of real analysis but who do not necessarily have the time to appreciate all of the theory. Valuable as a comprehensive reference, a study guide for students, or a quick review, "A Handbook of Real Variables" will benefit a wide audience.
Through four editions this popular textbook attracted a loyal readership and widespread use. Students find the book to be concise, accessible, and complete. Instructors find the book to be clear, authoritative, and dependable. The primary goal of this new edition remains the same as in previous editions. It is to make real analysis relevant and accessible to a broad audience of students with diverse backgrounds while also maintaining the integrity of the course. This text aims to be the generational touchstone for the subject and the go-to text for developing young scientists. This new edition continues the effort to make the book accessible to a broader audience. Many students who take a real analysis course do not have the ideal background. The new edition offers chapters on background material like set theory, logic, and methods of proof. The more advanced material in the book is made more apparent. This new edition offers a new chapter on metric spaces and their applications. Metric spaces are important in many parts of the mathematical sciences, including data mining, web searching, and classification of images. The author also revised the material on sequences and series adding examples and exercises that compare convergence tests and give additional tests. The text includes rare topics such as wavelets and applications to differential equations. The level of difficulty moves slowly, becoming more sophisticated in later chapters. Students have commented on the progression as a favorite aspect of the textbook. The author is perhaps the most prolific expositor of upper division mathematics. With over seventy books in print, thousands of students have been taught and learned from his books.
This is the second of two volumes containing peer-reviewed research and survey papers based on invited talks at the International Conference on Modern Analysis and Applications. The conference, which was dedicated to the 100th anniversary ofthebirthofMarkKrein,oneofthegreatestmathematiciansofthe20thcentury, was held in Odessa, Ukraine, on April 9-14, 2007. The conference focused on the main ideas, methods, results, and achievements of M.G. Krein. This second volume is devoted to the theory of di?erential operators and mechanics. It opens with the description of the conference and a number of survey papers about the work of M.G. Krein. The main part of the book consists of original research papers presenting the state of the art in the area of di?erential operators. The ?rst volume of these proceedings, entitled Operator Theory and Related Topics, concerns other aspects of the conference. The two volumes will be of - terest to a wide-rangeof readership in pure and applied mathematics, physics and engineering sciences. OperatorTheory: AdvancesandApplications,Vol.191, xi-xv c 2009Birkh. auserVerlagBasel/Switzerland The World Dimension of the Heritage of a Ukrainian Mathematician International Conference "Modern Analysis and Applications" (MAA - 2007) (April 9-14, 2007, Odessa) Yu. BerezanskyandV.Gorbachuk This forum has been dedicated to the centennial birthday anniversary of one of the most prominent mathematicians of the twentieth century Mark Gr- orievich Krein, a corresponding member of the Academy of Sciences of the Ukr. SSR (1907-1989).
Learn the basics of white noise theory with White Noise Distribution Theory. This book covers the mathematical foundation and key applications of white noise theory without requiring advanced knowledge in this area. This instructive text specifically focuses on relevant application topics such as integral kernel operators, Fourier transforms, Laplacian operators, white noise integration, Feynman integrals, and positive generalized functions. Extremely well-written by one of the field's leading researchers, White Noise Distribution Theory is destined to become the definitive introductory resource on this challenging topic.
This is the ?rst of two volumes containing peer-reviewed research and survey papers based on invited talks at the International Conference on Modern Analysis and Applications. The conference, which was dedicated to the 100th anniversary ofthebirthofMarkKrein,oneofthegreatestmathematiciansofthe20thcentury, was held in Odessa, Ukraine, on April 9-14, 2007. The conference focused on the main ideas, methods, results, and achievements of M. G. Krein. This?rstvolumeisdevotedtotheoperatortheoryandrelatedtopics. Itopens withthebiographypapersaboutM. G. Kreinandanumberofsurveypapersabout his work. The mainpartof the book consistsof originalresearchpaperspresenting the state of the art in operator theory and its application. The second volume of these proceedings, entitled Di?erential Operators and Mechanics, concerns other aspects of the conference. The two volumes will be of interest to a wide-range of readership in pure and applied mathematics, physics and engineering sciences. The editors are sincerely grateful to the persons who contributed to the preparation of these proceedings: Sergei Marchenko, Myroslav Sushko, Kostyantyn Yusenko and Vladimir Zavalnyuk. Mark Grigorievich Krein, 1907-1989 Operator Theory: Advances and Applications, Vol. 190, xi-xx c 2009 Birkh. auser Verlag Basel/Switzerland Mark Grigorievich Krein (on his 100th birthday anniversary) V. M. Adamyan, D. Z. Arov, Yu. M. Berezansky, V. I. Gorbachuk, M. L. Gorbachuk, V. A. Mikhailets and A. M. Samoilenko April 3, 2007, is the l00th anniversary of the birth of Mark Grigorievich Krein, one of the most celebrated mathematicians of the 20th century, whose whole life was closely connected with Ukraine.
Presents a systematic study of the common zeros of polynomials in several variables which are related to higher dimensional quadrature. The author uses a new approach which is based on the recent development of orthogonal polynomials in several variables and differs significantly from the previous ones based on algebraic ideal theory. Featuring a great deal of new work, new theorems and, in many cases, new proofs, this self-contained work will be of great interest to researchers in numerical analysis, the theory of orthogonal polynomials and related subjects.
This is a systematic exposition of the basic part of the theory of mea sure and integration. The book is intended to be a usable text for students with no previous knowledge of measure theory or Lebesgue integration, but it is also intended to include the results most com monly used in functional analysis. Our two intentions are some what conflicting, and we have attempted a resolution as follows. The main body of the text requires only a first course in analysis as background. It is a study of abstract measures and integrals, and comprises a reasonably complete account of Borel measures and in tegration for R Each chapter is generally followed by one or more supplements. These, comprising over a third of the book, require some what more mathematical background and maturity than the body of the text (in particular, some knowledge of general topology is assumed) and the presentation is a little more brisk and informal. The material presented includes the theory of Borel measures and integration for n, the general theory of integration for locally compact Hausdorff spaces, and the first dozen results about invariant measures for groups. Most of the results expounded here are conventional in general character, if not in detail, but the methods are less so. The following brief overview may clarify this assertion."
Coupled with its sequel, this book gives a connected, unified exposition of Approximation Theory for functions of one real variable. It describes spaces of functions such as Sobolev, Lipschitz, Besov rearrangement-invariant function spaces and interpolation of operators. Other topics include Weierstrauss and best approximation theorems, properties of polynomials and splines. It contains history and proofs with an emphasis on principal results.
This "Selecta" contains approximately two thirds of the papers my father wrote from 1932 to 1994. These papers are divided into four fields. The first volume contains the papers on 1) Summability and Number Theory and 2) Interpolation. The second volume contains the fields 3) Real and Functional Analysis and 4) Approximation Theory. Each of these four groups of papers is introduced by a review of the contents and significance, respectively of the impact of these papers. The first volume contains, in addition, an autobiography, a complete list of publications, a list of doctoral students and four unpublished essays on mathematics in general: a) A report on the University of Leningrad b) On the work of the mathematical mind c) Proofs in Mathematics d) About Mathematical books. The report on the University of Leningrad, written in the late '40's, is a unique historical document which is still of current interest for several reasons. It is of interest for professional reasons since it contains a com plete description of a mathematics majors' curriculum through his entire course of studies. From it one can see both the changes and invariants of course material as well as the students' course load. Then one can also see the consequences of admittedly extreme political intervention in uni versity affairs. Today we use the term "politically correct," but in those times being politically correct was a matter of life and death. Finally, this is a tragedy of human beings caught in the siege of Leningrad."
The works of George G. Lorentz, spanning more than 60 years, have played a significant role in the development and evolution of mathematical analysis. The papers presented in this volume represent a selection of his best works, along with commentary from his students and colleagues.
This volume is part of the collaboration agreement between Springer and the ISAAC society. This is the first in the two-volume series originating from the 2020 activities within the international scientific conference "Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis" (OTHA), Southern Federal University in Rostov-on-Don, Russia. This volume is focused on general harmonic analysis and its numerous applications. The two volumes cover new trends and advances in several very important fields of mathematics, developed intensively over the last decade. The relevance of this topic is related to the study of complex multiparameter objects required when considering operators and objects with variable parameters.
This book studies the large deviations for empirical measures and vector-valued additive functionals of Markov chains with general state space. Under suitable recurrence conditions, the ergodic theorem for additive functionals of a Markov chain asserts the almost sure convergence of the averages of a real or vector-valued function of the chain to the mean of the function with respect to the invariant distribution. In the case of empirical measures, the ergodic theorem states the almost sure convergence in a suitable sense to the invariant distribution. The large deviation theorems provide precise asymptotic estimates at logarithmic level of the probabilities of deviating from the preponderant behavior asserted by the ergodic theorems.
The book has been made more illustrative and self-contained so as to cater to the need of students and teachers at graduate and postgraduate level. It is also meant for engineering students and other professionals as well as competitive examinations. To reinforce and solidify the understanding, some of the chapters have been rearranged and several new exercises and solved examples have been incorporated. The section on limits inferior and superior of sequences is introduced and discussed in detail. Every care has been taken to explain and elucidate the different concepts so as to provide conceptual clarity to the readers.
The book offers an initiation into mathematical reasoning, and into the mathematician's mind-set and reflexes. Specifically, the fundamental operations of calculus--differentiation and integration of functions and the summation of infinite series--are built, with logical continuity (i.e., "rigor"), starting from the real number system. The first chapter sets down precise axioms for the real number system, from which all else is derived using the logical tools summarized in an Appendix. The discussion of the "fundamental theorem of calculus," the focal point of the book, especially thorough. The concluding chapter establishes a significant beachhead in the theory of the Lebesgue integral by elementary means.
This book provides a broad, interdisciplinary overview of non-Archimedean analysis and its applications. Featuring new techniques developed by leading experts in the field, it highlights the relevance and depth of this important area of mathematics, in particular its expanding reach into the physical, biological, social, and computational sciences as well as engineering and technology. In the last forty years the connections between non-Archimedean mathematics and disciplines such as physics, biology, economics and engineering, have received considerable attention. Ultrametric spaces appear naturally in models where hierarchy plays a central role - a phenomenon known as ultrametricity. In the 80s, the idea of using ultrametric spaces to describe the states of complex systems, with a natural hierarchical structure, emerged in the works of Fraunfelder, Parisi, Stein and others. A central paradigm in the physics of certain complex systems - for instance, proteins - asserts that the dynamics of such a system can be modeled as a random walk on the energy landscape of the system. To construct mathematical models, the energy landscape is approximated by an ultrametric space (a finite rooted tree), and then the dynamics of the system is modeled as a random walk on the leaves of a finite tree. In the same decade, Volovich proposed using ultrametric spaces in physical models dealing with very short distances. This conjecture has led to a large body of research in quantum field theory and string theory. In economics, the non-Archimedean utility theory uses probability measures with values in ordered non-Archimedean fields. Ultrametric spaces are also vital in classification and clustering techniques. Currently, researchers are actively investigating the following areas: p-adic dynamical systems, p-adic techniques in cryptography, p-adic reaction-diffusion equations and biological models, p-adic models in geophysics, stochastic processes in ultrametric spaces, applications of ultrametric spaces in data processing, and more. This contributed volume gathers the latest theoretical developments as well as state-of-the art applications of non-Archimedean analysis. It covers non-Archimedean and non-commutative geometry, renormalization, p-adic quantum field theory and p-adic quantum mechanics, as well as p-adic string theory and p-adic dynamics. Further topics include ultrametric bioinformation, cryptography and bioinformatics in p-adic settings, non-Archimedean spacetime, gravity and cosmology, p-adic methods in spin glasses, and non-Archimedean analysis of mental spaces. By doing so, it highlights new avenues of research in the mathematical sciences, biosciences and computational sciences.
Current research and applications in nonlinear analysis influenced by Haim Brezis and Louis Nirenberg are presented in this book by leading mathematicians. Each contribution aims to broaden reader's understanding of theories, methods, and techniques utilized to solve significant problems. Topics include: Sobolev Spaces Maximal monotone operators A theorem of Brezis-Nirenberg Operator-norm convergence of the Trotter product formula Elliptic operators with infinitely many variables Pseudo-and quasiconvexities for nonsmooth function Anisotropic surface measures Eulerian and Lagrangian variables Multiple periodic solutions of Lagrangian systems Porous medium equation Nondiscrete Lassonde-Revalski principle Graduate students and researchers in mathematics, physics, engineering, and economics will find this book a useful reference for new techniques and research areas. Haim Brezis and Louis Nirenberg's fundamental research in nonlinear functional analysis and nonlinear partial differential equations along with their years of teaching and training students have had a notable impact in the field.
Advanced Data Analysis and Modeling in Chemical Engineering provides the mathematical foundations of different areas of chemical engineering and describes typical applications. The book presents the key areas of chemical engineering, their mathematical foundations, and corresponding modeling techniques. Modern industrial production is based on solid scientific methods, many of which are part of chemical engineering. To produce new substances or materials, engineers must devise special reactors and procedures, while also observing stringent safety requirements and striving to optimize the efficiency jointly in economic and ecological terms. In chemical engineering, mathematical methods are considered to be driving forces of many innovations in material design and process development.
This contributed volume showcases research and survey papers devoted to a broad range of topics on functional equations, ordinary differential equations, partial differential equations, stochastic differential equations, optimization theory, network games, generalized Nash equilibria, critical point theory, calculus of variations, nonlinear functional analysis, convex analysis, variational inequalities, topology, global differential geometry, curvature flows, perturbation theory, numerical analysis, mathematical finance and a variety of applications in interdisciplinary topics. Chapters in this volume investigate compound superquadratic functions, the Hyers-Ulam Stability of functional equations, edge degenerate pseudo-hyperbolic equations, Kirchhoff wave equation, BMO norms of operators on differential forms, equilibrium points of the perturbed R3BP, complex zeros of solutions to second order differential equations, a higher-order Ginzburg-Landau-type equation, multi-symplectic numerical schemes for differential equations, the Erdos-Renyi network model, strongly m-convex functions, higher order strongly generalized convex functions, factorization and solution of second order differential equations, generalized topologically open sets in relator spaces, graphical mean curvature flow, critical point theory in infinite dimensional spaces using the Leray-Schauder index, non-radial solutions of a supercritical equation in expanding domains, the semi-discrete method for the approximation of the solution of stochastic differential equations, homotopic metric-interval L-contractions in gauge spaces, Rhoades contractions theory, network centrality measures, the Radon transform in three space dimensions via plane integration and applications in positron emission tomography boundary perturbations on medical monitoring and imaging techniques, the KdV-B equation and biomedical applications.
For courses in undergraduate Analysis and Transition to Advanced Mathematics. Analysis with an Introduction to Proof, Fifth Edition helps fill in the groundwork students need to succeed in real analysis-often considered the most difficult course in the undergraduate curriculum. By introducing logic and emphasizing the structure and nature of the arguments used, this text helps students move carefully from computationally oriented courses to abstract mathematics with its emphasis on proofs. Clear expositions and examples, helpful practice problems, numerous drawings, and selected hints/answers make this text readable, student-oriented, and teacher- friendly.
One of the ways in which topology has influenced other branches of
mathematics in the past few decades is by putting the study of
continuity and convergence into a general setting. This new edition
of Wilson Sutherland's classic text introduces metric and
topological spaces by describing some of that influence. The aim is
to move gradually from familiar real analysis to abstract
topological spaces, using metric spaces as a bridge between the
two. The language of metric and topological spaces is established
with continuity as the motivating concept. Several concepts are
introduced, first in metric spaces and then repeated for
topological spaces, to help convey familiarity. The discussion
develops to cover connectedness, compactness and completeness, a
trio widely used in the rest of mathematics.
This book presents the probabilistic methods around Hardy martingales for an audience interested in their applications to complex, harmonic, and functional analysis. Building on work of Bourgain, Garling, Jones, Maurey, Pisier, and Varopoulos, it discusses in detail those martingale spaces that reflect characteristic qualities of complex analytic functions. Its particular themes are holomorphic random variables on Wiener space, and Hardy martingales on the infinite torus product, and numerous deep applications to the geometry and classification of complex Banach spaces, e.g., the SL estimates for Doob's projection operator, the embedding of L1 into L1/H1, the isomorphic classification theorem for the polydisk algebras, or the real variables characterization of Banach spaces with the analytic Radon Nikodym property. Due to the inclusion of key background material on stochastic analysis and Banach space theory, it's suitable for a wide spectrum of researchers and graduate students working in classical and functional analysis.
This "Select a" contains approximately two thirds of the papers my 1932 to 1994. These papers are divided into four fields. father wrote from The first volume contains the papers on 1) Summability and Number Theory and 2) Interpolation. The second volume contains the fields 3) Real and Functional Analysis and 4) Approximation Theory. Each of these four groups of papers is introduced by a review of the contents and significance, respectively of the impact of these papers. The first volume contains, in addition, an autobiography, a complete list of publications, a list of doctoral students and four unpublished essays on mathematics in general: a) A report on the University of Leningrad b) On the work of the mathematical mind c) Proofs in Mathematics d) About Mathematical books. The report on the University of Leningrad, written in the late '40's, is a unique historical document which is still of current interest for several reasons. It is of interest for professional reasons since it contains a com plete description of a mathematics majors' curriculum through his entire course of studies. From it one can see both the changes and invariants of course material as well as the students' course load. Then one can also see the consequences of admittedly extreme political intervention in uni versity affairs. Today we use the term "politically correct," but in those times being politically correct was a matter of life and death."
The rapid development of set theory in the last fifty years, mainly by obtaining plenty of independence results, strongly influenced an understanding of the structure of the real line. This book is devoted to the study of the real line and its subsets taking into account the recent results of set theory. Whenever possible the presentation is done without the full axiom of choice. Since the book is intended to be self-contained, all necessary results of set theory, topology, measure theory, and descriptive set theory are revisited with the purpose of eliminating superfluous use of an axiom of choice. The duality of measure and category is studied in a detailed manner. Several statements pertaining to properties of the real line are shown to be undecidable in set theory. The metamathematics behind set theory is shortly explained in the appendix. Each section contains a series of exercises with additional results.
Our knowledge of objects of complex and potential analysis has been enhanced recently by ideas and constructions of theoretical and mathematical physics, such as quantum field theory, nonlinear hydrodynamics, material science. These are some of the themes of this refereed collection of papers, which grew out of the first conference of the European Science Foundation Networking Programme 'Harmonic and Complex Analysis and Applications' held in Norway 2007.
This monograph offers a self-contained introduction to pseudodifferential operators and wavelets over real and p-adic fields. Aimed at graduate students and researchers interested in harmonic analysis over local fields, the topics covered in this book include pseudodifferential operators of principal type and of variable order, semilinear degenerate pseudodifferential boundary value problems (BVPs), non-classical pseudodifferential BVPs, wavelets and Hardy spaces, wavelet integral operators, and wavelet solutions to Cauchy problems over the real field and the p-adic field. |
You may like...
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Discrete Fractional Calculus
Christopher Goodrich, Allan C. Peterson
Hardcover
R2,566
Discovery Miles 25 660
Stochastic Analysis and Applications…
Fred Espen Benth, Giulia Di Nunno, …
Hardcover
R4,146
Discovery Miles 41 460
Advanced Calculus - A Transition to…
Thomas P. Dence, Joseph B. Dence
Hardcover
R2,113
Discovery Miles 21 130
Period Mappings and Period Domains
James Carlson, Stefan Muller-Stach, …
Hardcover
R2,662
Discovery Miles 26 620
Real Analysis with an Introduction to…
Don Hong, Jian zhong Wang, …
Hardcover
R2,200
Discovery Miles 22 000
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,532
Discovery Miles 35 320
Fixed Point Theory in Metric Type Spaces
Ravi P. Agarwal, Erdal Karapinar, …
Hardcover
R3,836
Discovery Miles 38 360
|