![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
This superb and self-contained work is an introductory presentation of basic ideas, structures, and results of differential and integral calculus for functions of several variables. The wide range of topics covered include the differential calculus of several variables, including differential calculus of Banach spaces, the relevant results of Lebesgue integration theory, and systems and stability of ordinary differential equations. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This text motivates the study of the analysis of several variables with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering.
This book aims at restructuring some fundamentals in measure and integration theory. It centers around the ubiquitous task to produce appropriate contents and measures from more primitive data like elementary contents and elementary integrals. It develops the new approach started around 1970 by Topsoe and others into a systematic theory. The theory is much more powerful than the traditional means and has striking implications all over measure theory and beyond.
This volume considers various methods for constructing cubature and quadrature formulas of arbitrary degree. These formulas are intended to approximate the calculation of multiple and conventional integrals over a bounded domain of integration. The latter is assumed to have a piecewise-smooth boundary and to be arbitrary in other aspects. Particular emphasis is placed on invariant cubature formulas and those for a cube, a simplex, and other polyhedra. Here, the techniques of functional analysis and partial differential equations are applied to the classical problem of numerical integration, to establish many important and deep analytical properties of cubature formulas. The prerequisites of the theory of many-dimensional discrete function spaces and the theory of finite differences are concisely presented. Special attention is paid to constructing and studying the optimal cubature formulas in Sobolev spaces. As an asymptotically optimal sequence of cubature formulas, a many-dimensional abstraction of the Gregory quadrature is indicated. Audience: This book is intended for researchers having a basic knowledge of functional analysis who are interested in the applications of modern theoretical methods to numerical mathematics.
In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions.
This is a text that develops calculus 'from scratch', with complete rigorous arguments. Its aim is to introduce the reader not only to the basic facts about calculus but, as importantly, to mathematical reasoning. It covers in great detail calculus of one variable and multivariable calculus. Additionally it offers a basic introduction to the topology of Euclidean space. It is intended to more advanced or highly motivated undergraduates.
Part two of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of integral analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
Part one of the authors' comprehensive and innovative work on multidimensional real analysis. This book is based on extensive teaching experience at Utrecht University and gives a thorough account of differential analysis in multidimensional Euclidean space. It is an ideal preparation for students who wish to go on to more advanced study. The notation is carefully organized and all proofs are clean, complete and rigorous. The authors have taken care to pay proper attention to all aspects of the theory. In many respects this book presents an original treatment of the subject and it contains many results and exercises that cannot be found elsewhere. The numerous exercises illustrate a variety of applications in mathematics and physics. This combined with the exhaustive and transparent treatment of subject matter make the book ideal as either the text for a course, a source of problems for a seminar or for self study.
This volume is dedicated to the centenary of the outstanding mathematician of the 20th century, Sergey Sobolev, and, in a sense, to his celebrated work On a theorem of functional analysis, published in 1938, exactly 70 years ago, was where the original Sobolev inequality was proved. This double event is a good occasion to gather experts for presenting the latest results on the study of Sobolev inequalities, which play a fundamental role in analysis, the theory of partial differential equations, mathematical physics, and differential geometry. In particular, the following topics are discussed: Sobolev-type inequalities on manifolds and metric measure spaces, traces, inequalities with weights, unfamiliar settings of Sobolev type inequalities, Sobolev mappings between manifolds and vector spaces, properties of maximal functions in Sobolev spaces, the sharpness of constants in inequalities, etc. The volume opens with a nice survey reminiscence, "My Love Affair with the Sobolev Inequality," by David R. Adams.
Problems in Real Analysis: Advanced Calculus on the Real Axis features a comprehensive collection of challenging problems in mathematical analysis that aim to promote creative, non-standard techniques for solving problems. This self-contained text offers a host of new mathematical tools and strategies which develop a connection between analysis and other mathematical disciplines, such as physics and engineering. A broad view of mathematics is presented throughout; the text is excellent for the classroom or self-study. It is intended for undergraduate and graduate students in mathematics, as well as for researchers engaged in the interplay between applied analysis, mathematical physics, and numerical analysis.
Fourier analysis has many scientific applications - in physics,
number theory, combinatorics, signal processing, probability
theory, statistics, option pricing, cryptography, acoustics,
oceanography, optics and diffraction, geometry, and other areas. In
signal processing and related fields, Fourier analysis is typically
thought of as decomposing a signal into its component frequencies
and their amplitudes.
The second volume expounds classical analysis as it is today, as a part of unified mathematics, and its interactions with modern mathematical courses such as algebra, differential geometry, differential equations, complex and functional analysis. The book provides a firm foundation for advanced work in any of these directions.
Presents Real & Complex Analysis Together Using a Unified Approach A two-semester course in analysis at the advanced undergraduate or first-year graduate level Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA's 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book's website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks-one for real function theory and one for complex function theory.
This classic textbook, now reissued, offers a clear exposition of modern probability theory and of the interplay between the properties of metric spaces and probability measures. The new edition has been made even more self-contained than before; it now includes a foundation of the real number system and the Stone-Weierstrass theorem on uniform approximation in algebras of functions. Several other sections have been revised and improved, and the comprehensive historical notes have been further amplified. A number of new exercises have been added, together with hints for solution.
We present a uni?ed approach to various sharp pointwise inequalities for a- lytic functions in a disk with the real part of the function on the circumference as the right-hand side. We refer to these inequalities as real-part theorems in reference to the ?rst assertion of such a kind, the celebrated Hadamard s real-part theorem (1892). The inequalities in question are frequently used in the theory of entire functions and in the analytic number theory. We hope that collecting these inequalities in one place, as well as general- ing and re?ning them, may prove useful for various applications. In particular, one can anticipate rich opportunities to extend these inequalities to analytic functions of several complex variables and solutions of partial di?erential eq- tions. The text contains revisions and extensions of recent publications of the authors 56]- 58] and some new material as well. The research of G. Kresin was supported by the KAMEA program of the Ministry of Absorption, State of Israel, and by the College of Judea and Samaria, Ariel. The work of V. Maz ya was supported by the Liverpool University and the Ohio State University. The authors record their thanks to these institutions. We are most grateful to Lev Aizenberg and Dmitry Khavinson for int- esting comments and enhancing our knowledge of the history of the topic."
Understanding the concepts and methods of real analysis is an essential skill for every undergraduate mathematics student. Written in an easy-to-read style, Real Analysis is a comprehensive introduction to this core subject and is ideal for self-study or as a course textbook for first and second-year undergraduates. Combining an informal style with precision mathematics, Real Analysis covers all the key topics with fully worked examples and exercises with solutions. Featuring: * Sequences and series - considering the central notion of a limit * Continuous functions * Differentiation * Integration * Logarithmic and exponential functions * Uniform convergence * Circular functions All these concepts and techniques are deployed in examples in the final chapter to provide the student with a thorough understanding of this challenging subject.
The study of variational problems showing multi-scale behaviour with oscillation or concentration phenomena is a challenging topic of very active research. This volume collects lecture notes on the asymptotic analysis of such problems when multi-scale behaviour derives from scale separation in the passage from atomistic systems to continuous functionals, from competition between bulk and surface energies, from various types of homogenization processes, and on concentration effects in Ginzburg-Landau energies and in subcritical growth problems.
When originally published, this text was the first general account of Hausdorff measures, a subject that has important applications in many fields of mathematics. The first of the three chapters contains an introduction to measure theory, paying particular attention to the study of non-sigma-finite measures. The second chapter develops the most general aspects of the theory of Hausdorff measures, and the final chapter gives a general survey of applications of Hausdorff measures followed by detailed accounts of two special applications. This new edition has a foreword by Kenneth Falconer outlining the developments in measure theory since this book first appeared. This book is ideal for graduate mathematicians with no previous knowledge of the subject, but experts in the field will also want a copy for their shelves.
This book provides a compact, but thorough, introduction to the subject of Real Analysis. It is intended for a senior undergraduate and for a beginning graduate one-semester course.
A Concrete Introduction to Analysis, Second Edition offers a major reorganization of the previous edition with the goal of making it a much more comprehensive and accessible for students. The standard, austere approach to teaching modern mathematics with its emphasis on formal proofs can be challenging and discouraging for many students. To remedy this situation, the new edition is more rewarding and inviting. Students benefit from the text by gaining a solid foundational knowledge of analysis, which they can use in their fields of study and chosen professions. The new edition capitalizes on the trend to combine topics from a traditional transition to proofs course with a first course on analysis. Like the first edition, the text is appropriate for a one- or two-semester introductory analysis or real analysis course. The choice of topics and level of coverage is suitable for mathematics majors, future teachers, and students studying engineering or other fields requiring a solid, working knowledge of undergraduate mathematics. Key highlights: Offers integration of transition topics to assist with the necessary background for analysis Can be used for either a one- or a two-semester course Explores how ideas of analysis appear in a broader context Provides as major reorganization of the first edition Includes solutions at the end of the book
First course calculus texts have traditionally been either engineering/science-oriented with too little rigor, or have thrown students in the deep end with a rigorous analysis text. The How and Why of One Variable Calculus closes this gap in providing a rigorous treatment that takes an original and valuable approach between calculus and analysis. Logically organized and also very clear and user-friendly, it covers 6 main topics; real numbers, sequences, continuity, differentiation, integration, and series. It is primarily concerned with developing an understanding of the tools of calculus. The author presents numerous examples and exercises that illustrate how the techniques of calculus have universal application. The How and Why of One Variable Calculus presents an excellent text for a first course in calculus for students in the mathematical sciences, statistics and analytics, as well as a text for a bridge course between single and multi-variable calculus as well as between single variable calculus and upper level theory courses for math majors.
The book is about differentiability of six operators on functions or pairs of functions: composition (f of g), integration (of f dg), multiplication and convolution of two functions, both varying, and the product integral and inverse operators for one function. The operators are differentiable with respect to p-variation norms with optimal remainder bounds. Thus the functions as arguments of the operators can be nonsmooth, possibly discontinuous, but four of the six operators turn out to be analytic (holomorphic) for some p-variation norms. The reader will need to know basic real analysis, including Riemann and Lebesgue integration. The book is intended for analysts, statisticians and probabilists. Analysts and statisticians have each studied the differentiability of some of the operators from different viewpoints, and this volume seeks to unify and expand their results.
From the reviews: "This is an excellent exposition about abelian Reidemeister torsions for three-manifolds." -Zentralblatt Math "This monograph contains a wealth of information many topologists will find very handy. ...Many of the new points of view pioneered by Turaev are gradually becoming mainstream and are spreading beyond the pure topology world. This monograph is a timely and very useful addition to the scientific literature." -Mathematical Reviews
Ideal spaces are a very general class of normed spaces of measurable functions, which includes e.g. Lebesgue and Orlicz spaces. Their most important application is in functional analysis in the theory of (usual and partial) integral and integro-differential equations. The book is a rather complete and self-contained introduction into the general theory of ideal spaces. Some emphasis is put on spaces of vector-valued functions and on the constructive viewpoint of the theory (without the axiom of choice). The reader should have basic knowledge in functional analysis and measure theory.
The first part of these lecture notes is an introduction to potential theory to prepare the reader for later parts, which can be used as the basis for a series of advanced lectures/seminars on potential theory/harmonic analysis. Topics covered in the book include minimal thinness, quasiadditivity of capacity, applications of singular integrals to potential theory, L(p)-capacity theory, fine limits of the Nagel-Stein boundary limit theorem and integrability of superharmonic functions. The notes are written for an audience familiar with the theory of integration, distributions and basic functional analysis.
Most books devoted to the theory of the integral have ignored the nonabsolute integrals, despite the fact that the journal literature relating to these has become richer and richer. The aim of this monograph is to fill this gap, to perform a study on the large number of classes of real functions which have been introduced in this context, and to illustrate them with many examples. This book reports on some recent advances in the theory of real functions and can serve as a textbook for a course in the subject, and to stimulate further research in this exciting field. |
You may like...
|