![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
There seems to be two types of books on inequalities. On the one hand there are treatises that attempt to cover all or most aspects of the subject, and where an attempt is made to give all results in their best possible form, together with either a full proof or a sketch of the proof together with references to where a full proof can be found. Such books, aimed at the professional pure and applied mathematician, are rare. The first such, that brought some order to this untidy field, is the classical "Inequalities" of Hardy, Littlewood & P6lya, published in 1934. Important as this outstanding work was and still is, it made no attempt at completeness; rather it consisted of the total knowledge of three front rank mathematicians in a field in which each had made fundamental contributions. Extensive as this combined knowledge was there were inevitably certain lacunre; some important results, such as Steffensen's inequality, were not mentioned at all; the works of certain schools of mathematicians were omitted, and many important ideas were not developed, appearing as exercises at the ends of chapters. The later book "Inequalities" by Beckenbach & Bellman, published in 1961, repairs many of these omissions. However this last book is far from a complete coverage of the field, either in depth or scope.
This volume is devoted to integral inequalities of the Gronwall-Bellman-Bihari type. Following a systematic exposition of linear and nonlinear inequalities, attention is paid to analogues including integro-differential inequalities, functional differential inequalities, and discrete and abstract analogues. Applications to the investigation of the properties of solutions of various classes of equations such as uniqueness, stability, dichotomy, asymptotic equivalence and behaviour is also discussed. The book comprises three chapters. Chapter I and II consider classical linear and nonlinear integral inequalities. Chapter III is devoted to various classes of integral inequalities of Gronwall type, and their analogues, which find applications in the theory of integro-differential equations, partial differential equations, differential equations with deviating argument, impube differential equations, etc. Each chapter concludes with a section illustrating the manner of application. The book also contains an extensive bibliography. For researchers whose work involves the theory and application of integral inequalities in mathematics, engineering and physics.
One service mathematic;., has Jcndcml the 'Et moi, .. si j'avait su comment CD revcnir, human race. It has put COIDDlOJI SCIISC back je n'y scrais point allC.' whc: rc it belongs, on the topmost shell next Jules Verne to the dusty canister labc1lcd 'dilcardcd nOD- The series is divergent; tbcre(on: we may be sense'. Eric T. Bcll able to do something with it o. Hcavisidc Mathematics is a tool for thought. A highly necessary tooll in a world where both feedbaclt and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other paJts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
The second edition of "A Course in Real Analysis" provides a
solid foundation of real analysis concepts and principles,
presenting a broad range of topics in a clear and concise manner.
The book is excellent at balancing theory and applications with a
wealth of examples and exercises. The authors take a progressive
approach of skill building to help students learn to absorb the
abstract. Real world applications, probability theory, harmonic
analysis, and dynamical systems theory are included, offering
considerable flexibility in the choice of material to cover in the
classroom. The accessible exposition not only helps students master
real analysis, but also makes the book useful as a reference.
Content and Aims of this Book Earlier drafts of the manuscript of this book (James A. Boa was then coau thor) contained discussions of many methods and examples of singular perturba tion problems. The ambitious plans of covering a large number of topics were later abandoned in favor of the present goal: a thorough discussion of selected ideas and techniques used in the method of matched asymptotic expansions. Thus many problems and methods are not covered here: the method of av eraging and the related method of multiple scales are mentioned mainly to give reasons why they are not discussed further. Examples which required too sophis ticated and involved calculations, or advanced knowledge of a special field, are not treated; for instance, to the author's regret some very interesting applications to fluid mechanics had to be omitted for this reason. Artificial mathematical examples introduced to show some exotic or unexpected behavior are omitted, except when they are analytically simple and are needed to illustrate mathematical phenomena important for realistic problems. Problems of numerical analysis are not discussed."
Coupled with its sequel, this book gives a connected, unified exposition of Approximation Theory for functions of one real variable. It describes spaces of functions such as Sobolev, Lipschitz, Besov rearrangement-invariant function spaces and interpolation of operators. Other topics include Weierstrauss and best approximation theorems, properties of polynomials and splines. It contains history and proofs with an emphasis on principal results.
This very comprehensive and practical textbook presents a clear, systematic and comprehensive introduction to the relevant mathematics and physics of linear and nonlinear oscillations and waves. It explains even the most complicated cases clearly, with numerous illustrations for further clarification.
This is a revised and expanded edition of a successful graduate and reference text. The book is designed for a standard graduate course on probability theory, including some important applications. The new edition offers a detailed treatment of the core area of probability, and both structural and limit results are presented in detail. Compared to the first edition, the material and presentation are better highlighted; each chapter is improved and updated.
What is the true mark of inspiration? Ideally it may mean the originality, freshness and enthusiasm of a new breakthrough in mathematical thought. The reader will feel this inspiration in all four seminal papers by Duistermaat, Guillemin and H rmander presented here for the first time ever in one volume. However, as time goes by, the price researchers have to pay is to sacrifice simplicity for the sake of a higher degree of abstraction. Thus the original idea will only be a foundation on which more and more abstract theories are being built. It is the unique feature of this book to combine the basic motivations and ideas of the early sources with knowledgeable and lucid expositions on the present state of Fourier Integral Operators, thus bridging the gap between the past and present. A handy and useful introduction that will serve novices in this field and working mathematicians equally well.
This volume is dedicated to the centenary of the outstanding mathematician of the 20th century, Sergey Sobolev, and, in a sense, to his celebrated work On a theorem of functional analysis, published in 1938, exactly 70 years ago, was where the original Sobolev inequality was proved. This double event is a good occasion to gather experts for presenting the latest results on the study of Sobolev inequalities, which play a fundamental role in analysis, the theory of partial differential equations, mathematical physics, and differential geometry. In particular, the following topics are discussed: Sobolev-type inequalities on manifolds and metric measure spaces, traces, inequalities with weights, unfamiliar settings of Sobolev type inequalities, Sobolev mappings between manifolds and vector spaces, properties of maximal functions in Sobolev spaces, the sharpness of constants in inequalities, etc. The volume opens with a nice survey reminiscence, "My Love Affair with the Sobolev Inequality," by David R. Adams.
The manuscript gives a coherent and detailed account of the theory of series in the eighteenth and early nineteenth centuries. It provides in one place an account of many results that are generally to be found - if at all - scattered throughout the historical and textbook literature. It presents the subject from the viewpoint of the mathematicians of the period, and is careful to distinguish earlier conceptions from ones that prevail today.
Victor Isakov This volume contains various results on partial di?erential equations where Sobolev spaces are used. Their selection is motivated by the research int- ests of the editor and the geographicallinks to the places where S. L. Sobolev worked and lived: St. Petersburg, Moscow, and Novosibirsk. Most of the papers are written by leading experts in control theory and inverse pr- lems. Another reason for the selection is a strong link to applied areas. In my opinion, control theory and inverse problems are main areas of di?er- tial equations of importance for some branches of contemporary science and engineering. S. L. Sobolev, as many great mathematicians, was very much motivated by applications. He did not distinguished between pure and - plied mathematics, but, in his own words, between "good mathematics and bad mathematics. " While he possessed a brilliant analytical technique, he most valued innovative ideas, solutions of deep conceptual problems, and not mathematical decorations, perfecting exposition, and "generalizations. " S. L. Sobolev himself never published papers on inverse problems or c- trol theory, but he was very much aware of the state of art and he monitored research on inverse problems. In particular, in his lecture at a Conference on Di?erentialEquationsin1954(found inSobolev'sarchiveandmadeavailable to me by Alexander Bukhgeim), he outlined main inverse problems in g- physics: theinverseseismicproblem, theelectromagneticprospecting, andthe inverse problem of gravimetry.
Based on a one-year course taught by the author to graduates at the University of Missouri, this book provides a student-friendly account of some of the standard topics encountered in an introductory course of ordinary differential equations. In a second semester, these ideas can be expanded by introducing more advanced concepts and applications. A central theme in the book is the use of Implicit Function Theorem, while the latter sections of the book introduce the basic ideas of perturbation theory as applications of this Theorem. The book also contains material differing from standard treatments, for example, the Fiber Contraction Principle is used to prove the smoothness of functions that are obtained as fixed points of contractions. The ideas introduced in this section can be extended to infinite dimensions.
This book deals mainly with the study of convex functions and their behavior from the point of view of stability with respect to perturbations. We shall consider convex functions from the most modern point of view: a function is de?ned to be convex whenever its epigraph, the set of the points lying above the graph, is a convex set. Thus many of its properties can be seen also as properties of a certain convex set related to it. Moreover, we shall consider extended real valued functions, i. e. , functions taking possibly the values?? and +?. The reason for considering the value +? is the powerful device of including the constraint set of a constrained minimum problem into the objective function itself (by rede?ning it as +? outside the constraint set). Except for trivial cases, the minimum value must be taken at a point where the function is not +?, hence at a point in the constraint set. And the value ?? is allowed because useful operations, such as the inf-convolution, can give rise to functions valued?? even when the primitive objects are real valued. Observe that de?ning the objective function to be +? outside the closed constraint set preserves lower semicontinuity, which is the pivotal and mi- mal continuity assumption one needs when dealing with minimum problems. Variational calculus is usually based on derivatives.
The book contains chapters of structured approach to problem solving in mathematical analysis on an intermediate level. It follows the ideas of G.Polya and others, distinguishing between exercises and problem solving in mathematics. Interrelated concepts are connected by hyperlinks, pointing toward easier or more difficult problems so as to show paths of mathematical reasoning. Basic definitions and theorems can also be found by hyperlinks from relevant places. Problems are open to alternative formulations, generalizations, simplifications, and verification of hypotheses by the reader; this is shown to be helpful in solving problems. The book presents how advanced mathematical software can aid all stages of mathematical reasoning while the mathematical content remains in foreground. The authors show how software can contribute to deeper understanding and to enlarging the scope of teaching for students and teachers of mathematics.
This book is concerned with topological and differential properties of multivalued mappings and marginal functions. Beside this applica- tions to the sensitivity analysis of optimization problems, in particular nonlinear programming problems with perturbations, are studied. The elaborated methods are primarily obtained by theories and concepts of two former Soviet Union researchers, Demyanov and Rubinov. Con- sequently, a significant part of the presented results have never been published in English before. Based on the use of directional derivatives as a key tool in studying nonsmooth functions and multifunctions, these results can be considered as a further development of quasidifferential calculus created by Demyanov and Rubinov. In contrast to other research in this field, especially the recent publica- tion by Bonnans and Shapiro, this book analyses properties of marginal functions associated with optimization problems under quite general con- straints defined by means of multivalued mappings. A unified approach to directional differentiability of functions and multifunctions forms the base of the volume.
In 1960 the Polish mathematician Zdzidlaw Opial (1930--1974) published an inequality involving integrals of a function and its derivative. This volume offers a systematic and up-to-date account of developments in Opial-type inequalities. The book presents a complete survey of results in the field, starting with Opial's landmark paper, traversing through its generalizations, extensions and discretizations. Some of the important applications of these inequalities in the theory of differential and difference equations, such as uniqueness of solutions of boundary value problems, and upper bounds of solutions are also presented. This book is suitable for graduate students and researchers in mathematical analysis and applications.
Providing the mathematical background required for the study of fractal topics, this book deals with integration in the modern sense, together with mathematical probability. The emphasis is on the particular results that aid the discussion of fractals, and follows Edgars Measure, Topology, and Fractal Geometry. With exercises throughout, this is and ideal text for beginning graduate students both in the classroom and for self-study.
Was plane geometry your favourite math course in high school? Did you like proving theorems? Are you sick of memorising integrals? If so, real analysis could be your cup of tea. In contrast to calculus and elementary algebra, it involves neither formula manipulation nor applications to other fields of science. None. It is Pure Mathematics, and it is sure to appeal to the budding pure mathematician. In this new introduction to undergraduate real analysis the author takes a different approach from past studies of the subject, by stressing the importance of pictures in mathematics and hard problems. The exposition is informal and relaxed, with many helpful asides, examples and occasional comments from mathematicians like Dieudonne, Littlewood and Osserman. The author has taught the subject many times over the last 35 years at Berkeley and this book is based on the honours version of this course. The book contains an excellent selection of more than 500 exercises.
Based on a course given to talented high-school students at Ohio University in 1988, this book is essentially an advanced undergraduate textbook about the mathematics of fractal geometry. It nicely bridges the gap between traditional books on topology/analysis and more specialized treatises on fractal geometry. The book treats such topics as metric spaces, measure theory, dimension theory, and even some algebraic topology. It takes into account developments in the subject matter since 1990. Sections are clear and focused. The book contains plenty of examples, exercises, and good illustrations of fractals, including 16 color plates.
This introductory differential equations textbook presents a convenient way for professors to integrate symbolic computing into the study of differential equations and linear algebra. Mathematica provides the necessary computational power and is employed from the very beginning of the text. Each new idea is interactively developed using it. After first learning about the fundamentals of differential equations and linear algebra, the student is immediately given an opportunity to examine each new concept using Mathematica. All ideas are explored utilizing Mathematica, and though the computer eases the computational burden, the student is encouraged to think about what the computations reveal, how they are consistent with the mathematics, what any conclusions mean, and how they may be applied. This new edition updates the text to Mathematica 5.0 and offers a more extensive treatment of linear algebra. It has been thoroughly revised and corrected throughout.
This book aims at restructuring some fundamentals in measure and integration theory. It centers around the ubiquitous task to produce appropriate contents and measures from more primitive data like elementary contents and elementary integrals. It develops the new approach started around 1970 by Topsoe and others into a systematic theory. The theory is much more powerful than the traditional means and has striking implications all over measure theory and beyond.
This book contains almost 450 exercises, all with complete solutions; it provides supplementary examples, counter-examples, and applications for the basic notions usually presented in an introductory course in Functional Analysis. Three comprehensive sections cover the broad topic of functional analysis. A large number of exercises on the weak topologies is included.
Presents Real & Complex Analysis Together Using a Unified Approach A two-semester course in analysis at the advanced undergraduate or first-year graduate level Unlike other undergraduate-level texts, Real and Complex Analysis develops both the real and complex theory together. It takes a unified, elegant approach to the theory that is consistent with the recommendations of the MAA's 2004 Curriculum Guide. By presenting real and complex analysis together, the authors illustrate the connections and differences between these two branches of analysis right from the beginning. This combined development also allows for a more streamlined approach to real and complex function theory. Enhanced by more than 1,000 exercises, the text covers all the essential topics usually found in separate treatments of real analysis and complex analysis. Ancillary materials are available on the book's website. This book offers a unique, comprehensive presentation of both real and complex analysis. Consequently, students will no longer have to use two separate textbooks-one for real function theory and one for complex function theory.
In this volume we study the generalized Bessel functions of the first kind by using a number of classical and new findings in complex and classical analysis. Our aim is to present interesting geometric properties and functional inequalities for these generalized Bessel functions. Moreover, we extend many known inequalities involving circular and hyperbolic functions to Bessel and modified Bessel functions. |
![]() ![]() You may like...
Theory of Translation Closedness for…
Chao Wang, Ravi P. Agarwal, …
Hardcover
R3,804
Discovery Miles 38 040
Real Analysis via Sequences and Series
Charles Little, Kee L. Teo, …
Hardcover
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,758
Discovery Miles 37 580
Nonlinear Differential Problems with…
Dumitru Motreanu
Paperback
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,906
Discovery Miles 39 060
|