![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
This undergraduate textbook introduces students to the basics of real analysis, provides an introduction to more advanced topics including measure theory and Lebesgue integration, and offers an invitation to functional analysis. While these advanced topics are not typically encountered until graduate study, the text is designed for the beginner. The author's engaging style makes advanced topics approachable without sacrificing rigor. The text also consistently encourages the reader to pick up a pencil and take an active part in the learning process. Key features include: - examples to reinforce theory; - thorough explanations preceding definitions, theorems and formal proofs; - illustrations to support intuition; - over 450 exercises designed to develop connections between the concrete and abstract. This text takes students on a journey through the basics of real analysis and provides those who wish to delve deeper the opportunity to experience mathematical ideas that are beyond the standard undergraduate curriculum.
A revised and expanded second edition of Reiter's classic text, this book deals with various developments in analysis centring around the fundamental work of Wiener, Carleman, and Weil. It starts with the classical theory of Fourier transforms in euclidean space, continues with a study of certain general function algebras, and then discusses functions defined on locally compact groups. The book gives a systematic introduction to these topics and endeavours to provide tools for further research. The new edition contains relevent material that was unavailable when the first edition was published.
This book is based on lectures given at "Mekhmat", the Department of Mechanics and Mathematics at Moscow State University, one of the top mathematical departments worldwide, with a rich tradition of teaching functional analysis. Featuring an advanced course on real and functional analysis, the book presents not only core material traditionally included in university courses of different levels, but also a survey of the most important results of a more subtle nature, which cannot be considered basic but which are useful for applications. Further, it includes several hundred exercises of varying difficulty with tips and references. The book is intended for graduate and PhD students studying real and functional analysis as well as mathematicians and physicists whose research is related to functional analysis.
Based on the authors' combined 35 years of experience in teaching, A Basic Course in Real Analysis introduces students to the aspects of real analysis in a friendly way. The authors offer insights into the way a typical mathematician works observing patterns, conducting experiments by means of looking at or creating examples, trying to understand the underlying principles, and coming up with guesses or conjectures and then proving them rigorously based on his or her explorations. With more than 100 pictures, the book creates interest in real analysis by encouraging students to think geometrically. Each difficult proof is prefaced by a strategy and explanation of how the strategy is translated into rigorous and precise proofs. The authors then explain the mystery and role of inequalities in analysis to train students to arrive at estimates that will be useful for proofs. They highlight the role of the least upper bound property of real numbers, which underlies all crucial results in real analysis. In addition, the book demonstrates analysis as a qualitative as well as quantitative study of functions, exposing students to arguments that fall under hard analysis. Although there are many books available on this subject, students often find it difficult to learn the essence of analysis on their own or after going through a course on real analysis. Written in a conversational tone, this book explains the hows and whys of real analysis and provides guidance that makes readers think at every stage.
This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians.The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.
This book presents a unified treatise of the theory of measure and integration. In the setting of a general measure space, every concept is defined precisely and every theorem is presented with a clear and complete proof with all the relevant details. Counter-examples are provided to show that certain conditions in the hypothesis of a theorem cannot be simply dropped. The dependence of a theorem on earlier theorems is explicitly indicated in the proof, not only to facilitate reading but also to delineate the structure of the theory. The precision and clarity of presentation make the book an ideal textbook for a graduate course in real analysis while the wealth of topics treated also make the book a valuable reference work for mathematicians.The book is also very helpful to graduate students in statistics and electrical engineering, two disciplines that apply measure theory.
Motivated by recent increased activity of research on time scales, the book provides a systematic approach to the study of the qualitative theory of boundedness, periodicity and stability of Volterra integro-dynamic equations on time scales. Researchers and graduate students who are interested in the method of Lyapunov functions/functionals, in the study of boundedness of solutions, in the stability of the zero solution, or in the existence of periodic solutions should be able to use this book as a primary reference and as a resource of latest findings. This book contains many open problems and should be of great benefit to those who are pursuing research in dynamical systems or in Volterra integro-dynamic equations on time scales with or without delays. Great efforts were made to present rigorous and detailed proofs of theorems. The book should serve as an encyclopedia on the construction of Lyapunov functionals in analyzing solutions of dynamical systems on time scales. The book is suitable for a graduate course in the format of graduate seminars or as special topics course on dynamical systems. The book should be of interest to investigators in biology, chemistry, economics, engineering, mathematics and physics.
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov-Arnold-Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert-Arnold problem for the number of zeros of abelian integrals, Arnold's inequality, comparison, and complexification method in real algebraic geometry, Arnold-Kolmogorov solution of Hilbert's 13th problem, Arnold's spectral sequence in singularity theory, Arnold diffusion, The Euler-Poincare-Arnold equations for geodesics on Lie groups, Arnold's stability criterion in hydrodynamics, ABC (Arnold-Beltrami-Childress) ?ows in ?uid dynamics, The Arnold-Korkina dynamo, Arnold's cat map, The Arnold-Liouville theorem in integrable systems, Arnold's continued fractions, Arnold's interpretation of the Maslov index, Arnold's relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan-Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold's books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world.
The Henstock-Kurzweil integral, which is also known as the generalized Riemann integral, arose from a slight modification of the classical Riemann integral more than 50 years ago. This relatively new integral is known to be equivalent to the classical Perron integral; in particular, it includes the powerful Lebesgue integral. This book presents an introduction of the multiple Henstock-Kurzweil integral. Along with the classical results, this book contains some recent developments connected with measures, multiple integration by parts, and multiple Fourier series. The book can be understood with a prerequisite of advanced calculus.
Analysis of Variance, Design, and Regression: Linear Modeling for Unbalanced Data, Second Edition presents linear structures for modeling data with an emphasis on how to incorporate specific ideas (hypotheses) about the structure of the data into a linear model for the data. The book carefully analyzes small data sets by using tools that are easily scaled to big data. The tools also apply to small relevant data sets that are extracted from big data. New to the Second Edition Reorganized to focus on unbalanced data Reworked balanced analyses using methods for unbalanced data Introductions to nonparametric and lasso regression Introductions to general additive and generalized additive models Examination of homologous factors Unbalanced split plot analyses Extensions to generalized linear models R, Minitab (R), and SAS code on the author's website The text can be used in a variety of courses, including a yearlong graduate course on regression and ANOVA or a data analysis course for upper-division statistics students and graduate students from other fields. It places a strong emphasis on interpreting the range of computer output encountered when dealing with unbalanced data.
Vladimir Arnold was one of the great mathematical scientists of our time. He is famous for both the breadth and the depth of his work. At the same time he is one of the most prolific and outstanding mathematical authors. This second volume of his Collected Works focuses on hydrodynamics, bifurcation theory, and algebraic geometry.
Transmutation operators in differential equations and spectral theory can be used to reveal the relations between different problems, and often make it possible to transform difficult problems into easier ones. Accordingly, they represent an important mathematical tool in the theory of inverse and scattering problems, of ordinary and partial differential equations, integral transforms and equations, special functions, harmonic analysis, potential theory, and generalized analytic functions. This volume explores recent advances in the construction and applications of transmutation operators, while also sharing some interesting historical notes on the subject.
Based on an honors course taught by the author at UC Berkeley, this introduction to undergraduate real analysis gives a different emphasis by stressing the importance of pictures and hard problems. Topics include: a natural construction of the real numbers, four-dimensional visualization, basic point-set topology, function spaces, multivariable calculus via differential forms (leading to a simple proof of the Brouwer Fixed Point Theorem), and a pictorial treatment of Lebesgue theory. Over 150 detailed illustrations elucidate abstract concepts and salient points in proofs. The exposition is informal and relaxed, with many helpful asides, examples, some jokes, and occasional comments from mathematicians, such as Littlewood, Dieudonne, and Osserman. This book thus succeeds in being more comprehensive, more comprehensible, and more enjoyable, than standard introductions to analysis. New to the second edition of Real Mathematical Analysis is a presentation of Lebesgue integration done almost entirely using the undergraph approach of Burkill. Payoffs include: concise picture proofs of the Monotone and Dominated Convergence Theorems, a one-line/one-picture proof of Fubini's theorem from Cavalieri's Principle, and, in many cases, the ability to see an integral result from measure theory. The presentation includes Vitali's Covering Lemma, density points - which are rarely treated in books at this level - and the almost everywhere differentiability of monotone functions. Several new exercises now join a collection of over 500 exercises that pose interesting challenges and introduce special topics to the student keen on mastering this beautiful subject.
Groups that are the product of two subgroups are of particular interest to group theorists. In what way is the structure of the product related to that of its subgroups? This monograph gives the first detailed account of the most important results that have been found about groups of this form over the past 35 years. Although the emphasis is on infinite groups, some relevant theorems about finite products of groups are also proved. The material presented will be of interest for research students and specialists in group theory. In particular, it can be used in seminars or to supplement a general group theory course. A special chapter on conjugacy and splitting theorems obtained by means of the cohomology of groups has never appeared in book form and should be of independent interest.
The second edition of "A Course in Real Analysis" provides a
solid foundation of real analysis concepts and principles,
presenting a broad range of topics in a clear and concise manner.
The book is excellent at balancing theory and applications with a
wealth of examples and exercises. The authors take a progressive
approach of skill building to help students learn to absorb the
abstract. Real world applications, probability theory, harmonic
analysis, and dynamical systems theory are included, offering
considerable flexibility in the choice of material to cover in the
classroom. The accessible exposition not only helps students master
real analysis, but also makes the book useful as a reference.
Ideas in mathematical sciences that might seem intuitively obvious may be proved incorrect with the use of their counterexamples. This monograph concentrates on counterexamples for use at the intersection of probability and real analysis, which makes it unique among treatments of counterexamples. The authors maintain that, in fact, if taught correctly, probability theory cannot be separated from real analysis.
This book is designed for a first course in real analysis following the standard course in elementary calculus. Since many students encounter rigorous mathematical theory for the first time in this course, the authors have included such elementary topics as the axioms of algebra and their immediate consequences as well as proofs of the basic theorems on limits. The pace is deliberate, and the proofs are detailed. The emphasis of the presentation is on theory, but the book also contains a full treatment (with many illustrative examples and exercises) of the standard topics in infinite series, Fourier series, multidimensional calculus, elements of metric spaces, and vector field theory. There are many exercises that enable the student to learn the techniques of proofs and the standard tools of analysis. In this second edition, improvements have been made in the exposition, and many of the proofs have been simplified. Additionally, this new edition includes an assortment of new exercises and provides answers for the odd-numbered problems.
Now considered a classic text on the topic, Measure and Integral: An Introduction to Real Analysis provides an introduction to real analysis by first developing the theory of measure and integration in the simple setting of Euclidean space, and then presenting a more general treatment based on abstract notions characterized by axioms and with less geometric content. Published nearly forty years after the first edition, this long-awaited Second Edition also: Studies the Fourier transform of functions in the spaces L1, L2, and Lp, 1 < p < 2 Shows the Hilbert transform to be a bounded operator on L2, as an application of the L2 theory of the Fourier transform in the one-dimensional case Covers fractional integration and some topics related to mean oscillation properties of functions, such as the classes of Hoelder continuous functions and the space of functions of bounded mean oscillation Derives a subrepresentation formula, which in higher dimensions plays a role roughly similar to the one played by the fundamental theorem of calculus in one dimension Extends the subrepresentation formula derived for smooth functions to functions with a weak gradient Applies the norm estimates derived for fractional integral operators to obtain local and global first-order Poincare-Sobolev inequalities, including endpoint cases Proves the existence of a tangent plane to the graph of a Lipschitz function of several variables Includes many new exercises not present in the first edition This widely used and highly respected text for upper-division undergraduate and first-year graduate students of mathematics, statistics, probability, or engineering is revised for a new generation of students and instructors. The book also serves as a handy reference for professional mathematicians.
Theories, methods and problems in approximation theory and analytic inequalities with a focus on differential and integral inequalities are analyzed in this book. Fundamental and recent developments are presented on the inequalities of Abel, Agarwal, Beckenbach, Bessel, Cauchy-Hadamard, Chebychev, Markov, Euler's constant, Grothendieck, Hilbert, Hardy, Carleman, Landau-Kolmogorov, Carlson, Bernstein-Mordell, Gronwall, Wirtinger, as well as inequalities of functions with their integrals and derivatives. Each inequality is discussed with proven results, examples and various applications. Graduate students and advanced research scientists in mathematical analysis will find this reference essential to their understanding of differential and integral inequalities. Engineers, economists, and physicists will find the highly applicable inequalities practical and useful to their research.
This volume features recent development and techniques in evolution equations by renown experts in the field. Each contribution emphasizes the relevance and depth of this important area of mathematics and its expanding reach into the physical, biological, social, and computational sciences as well as into engineering and technology. The reader will find an accessible summary of a wide range of active research topics, along with exciting new results. Topics include: Impulsive implicit Caputo fractional q-difference equations in finite and infinite dimensional Banach spaces; optimal control of averaged state of a population dynamic model; structural stability of nonlinear elliptic p(u)-Laplacian problem with Robin-type boundary condition; exponential dichotomy and partial neutral functional differential equations, stable and center-stable manifolds of admissible class; global attractor in Alpha-norm for some partial functional differential equations of neutral and retarded type; and more. Researchers in mathematical sciences, biosciences, computational sciences and related fields, will benefit from the rich and useful resources provided. Upper undergraduate and graduate students may be inspired to contribute to this active and stimulating field.
First course calculus texts have traditionally been either engineering/science-oriented with too little rigor, or have thrown students in the deep end with a rigorous analysis text. The How and Why of One Variable Calculus closes this gap in providing a rigorous treatment that takes an original and valuable approach between calculus and analysis. Logically organized and also very clear and user-friendly, it covers 6 main topics; real numbers, sequences, continuity, differentiation, integration, and series. It is primarily concerned with developing an understanding of the tools of calculus. The author presents numerous examples and exercises that illustrate how the techniques of calculus have universal application. The How and Why of One Variable Calculus presents an excellent text for a first course in calculus for students in the mathematical sciences, statistics and analytics, as well as a text for a bridge course between single and multi-variable calculus as well as between single variable calculus and upper level theory courses for math majors.
Gives a complete and rigorous presentation of the mathematical study of the expressions - hemivariational inequalities - arising in problems that involve nonconvex, nonsmooth energy functions. A theory of the existence of solutions for inequality problems involving monconvexity and nonsmoothness is established.
This work offers detailed coverage of every important aspect of symmetric structures in function of a single real variable, providing a historical perspective, proofs and useful methods for addressing problems. It provides assistance for real analysis problems involving symmetric derivatives, symmetric continuity and local symmetric structure of sets or functions.
This book provides a very readable description of a technique, developed by the author years ago but as current as ever, for proving that solutions to certain (non-elliptic) partial differential equations only have real analytic solutions when the data are real analytic (locally). The technique is completely elementary but relies on a construction, a kind of a non-commutative power series, to localize the analysis of high powers of derivatives in the so-called bad direction. It is hoped that this work will permit a far greater audience of researchers to come to a deep understanding of this technique and its power and flexibility.
This volume presents in a unified manner both classic as well as modern research results devoted to trigonometric sums. Such sums play an integral role in the formulation and understanding of a broad spectrum of problems which range over surprisingly many and different research areas. Fundamental and new developments are presented to discern solutions to problems across several scientific disciplines. Graduate students and researchers will find within this book numerous examples and a plethora of results related to trigonometric sums through pure and applied research along with open problems and new directions for future research. |
![]() ![]() You may like...
90 Rules For Entrepreneurs - Your Guide…
Marnus Broodryk
Paperback
![]()
Vusi - Business & Life Lessons From a…
Vusi Thembekwayo
Paperback
![]()
|