![]() |
![]() |
Your cart is empty |
||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alIe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
Mathematics students generally meet the Riemann integral early in their undergraduate studies, then at advanced undergraduate or graduate level they receive a course on measure and integration dealing with the Lebesgue theory. However, those whose interests lie more in the direction of applied mathematics will in all probability find themselves needing to use the Lebesgue or Lebesgue-Stieltjes Integral without having the necessary theoretical background. It is to such readers that this book is addressed. The authors aim to introduce the Lebesgue-Stieltjes integral on the real line in a natural way as an extension of the Riemann integral. They have tried to make the treatment as practical as possible. The evaluation of Lebesgue-Stieltjes integrals is discussed in detail, as are the key theorems of integral calculus as well as the standard convergence theorems. The book then concludes with a brief discussion of multivariate integrals and surveys ok L DEGREESp spaces and some applications. Exercises, which extend and illustrate the theory, and provide practice in techniques, are included. Michael Carter and Bruce van Brunt are senior lecturers in mathematics at Massey University, Palmerston North, New Zealand. Michael Carter obtained his Ph.D. at Massey University in 1976. He has research interests in control theory and differential equations, and has many years of experience in teaching analysis. Bruce van Brunt obtained his D.Phil. at the University of Oxford in 1989. His research interests include differential geometry, differential equations, and analysis. His publications
This is a textbook containing more than enough material for a year-long course in analysis at the advanced undergraduate or beginning graduate level. The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral. The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean space). The final part of the book deals with manifolds, differential forms, and Stokes' theorem, which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle.
Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use. Although analysis does not require an exhaustive knowledge of algebra, even of all the algebraic technique so far discovered, still there are topics whose con sideration prepares a student for a deeper understanding. However, in the ordinary treatise on the elements of algebra, these topics are either completely omitted or are treated carelessly. For this reason, I am cer tain that the material I have gathered in this book is quite sufficient to remedy that defect. I have striven to develop more adequately and clearly than is the usual case those things which are absolutely required for analysis. More over, I have also unraveled quite a few knotty problems so that the reader gradually and almost imperceptibly becomes acquainted with the idea of the infinite. There are also many questions which are answered in this work by means of ordinary algebra, although they are usually discussed with the aid of analysis. In this way the interrelationship between the two methods becomes clear."
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
This text is unique in accepting probability theory as an essential part of measure theory. Therefore, many examples are taken from probability, and probabilistic concepts such as independence and Markov processes are integrated into the text. Also, more attention than usual is paid to the role of algebras, and the metric defining the distance between sets as the measure of their symmetric difference is exploited more than is customary.
Many changes have been made in this second edition of A First Course in Real Analysis. The most noticeable is the addition of many problems and the inclusion of answers to most of the odd-numbered exercises. The book's readability has also been improved by the further clarification of many of the proofs, additional explanatory remarks, and clearer notation.
Variational calculus has been the basis of a variety of powerful methods in the ?eld of mechanics of materials for a long time. Examples range from numerical schemes like the ?nite element method to the determination of effective material properties via homogenization and multiscale approaches. In recent years, however, a broad range of novel applications of variational concepts has been developed. This c- prises the modeling of the evolution of internal variables in inelastic materials as well as the initiation and development of material patterns and microstructures. The IUTAM Symposium on "Variational Concepts with Applications to the - chanics of Materials" took place at the Ruhr-University of Bochum, Germany, on September 22-26, 2008. The symposium was attended by 55 delegates from 10 countries. Altogether 31 lectures were presented. The objective of the symposium was to give an overview of the new dev- opments sketched above, to bring together leading experts in these ?elds, and to provide a forum for discussing recent advances and identifying open problems to work on in the future. The symposium focused on the developmentof new material models as well as the advancement of the corresponding computational techniques. Speci?c emphasis is put on the treatment of materials possessing an inherent - crostructure and thus exhibiting a behavior which fundamentally involves multiple scales. Among the topics addressed at the symposium were: 1. Energy-based modeling of material microstructures via envelopes of n- quasiconvex potentials and applications to plastic behavior and pha- transformations.
This concise, well-written handbook provides a distillation of real variable theory with a particular focus on the subject's significant applications to differential equations and Fourier analysis. Ample examples and brief explanations---with very few proofs and little axiomatic machinery---are used to highlight all the major results of real analysis, from the basics of sequences and series to the more advanced concepts of Taylor and Fourier series, Baire Category, and the Weierstrass Approximation Theorem. Replete with realistic, meaningful applications to differential equations, boundary value problems, and Fourier analysis, this unique work is a practical, hands-on manual of real analysis that is ideal for physicists, engineers, economists, and others who wish to use the fruits of real analysis but who do not necessarily have the time to appreciate all of the theory. Valuable as a comprehensive reference, a study guide for students, or a quick review, "A Handbook of Real Variables" will benefit a wide audience.
An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.
The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in ToM M. APOSTOL's Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], orWALTERRUDIN's Principles of Mathe matical Analysis [2nd Ed., McGraw-Hill Book Co., New York, 1964].
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, tbat they can't see the problem. perbaps you will find the fina\ question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuJik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such newemerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.
From the author of the highly-acclaimed "A First Course in Real Analysis" comes a volume designed specifically for a short one-semester course in real analysis. Many students of mathematics and the physical and computer sciences need a text that presents the most important material in a brief and elementary fashion. The author meets this need with such elementary topics as the real number system, the theory at the basis of elementary calculus, the topology of metric spaces and infinite series. There are proofs of the basic theorems on limits at a pace that is deliberate and detailed, backed by illustrative examples throughout and no less than 45 figures.
This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in TOM M. ApOSTOL'S Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of M athe nd matical Analysis [2 Ed., McGraw-Hill Book Co., New York, 1964].
This volume is a selection from the 281 published papers of Joseph Leonard Walsh, former US Naval Officer and professor at University of Maryland and Harvard University. The nine broad sections are ordered following the evolution of his work. Commentaries and discussions of subsequent development are appended to most of the sections. Also included is one of Walsh's most influential works, "A closed set of normal orthogonal function," which introduced what is now known as "Walsh Functions".
This book is an extended version of lectures given by the ?rst author in 1995-1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics, physics, chemistry, and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cial
Analytic and Geometric Inequalities and Applications is devoted to recent advances in a variety of inequalities of Mathematical Analysis and Geo metry. Subjects dealt with in this volume include: Fractional order inequalities of Hardy type, differential and integral inequalities with initial time differ ence, multi-dimensional integral inequalities, Opial type inequalities, Gruss' inequality, Furuta inequality, Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory, distortion inequalities for ana lytic and univalent functions associated with certain fractional calculus and other linear operators, problem of infimum in the positive cone, alpha-quasi convex functions defined by convolution with incomplete beta functions, Chebyshev polynomials with integer coefficients, extremal problems for poly nomials, Bernstein's inequality and Gauss-Lucas theorem, numerical radii of some companion matrices and bounds for the zeros of polynomials, degree of convergence for a class of linear operators, open problems on eigenvalues of the Laplacian, fourth order obstacle boundary value problems, bounds on entropy measures for mixed populations as well as controlling the velocity of Brownian motion by its terminal value. A wealth of applications of the above is also included. We wish to express our appreciation to the distinguished mathematicians who contributed to this volume. Finally, it is our pleasure to acknowledge the fine cooperation and assistance provided by the staff of Kluwer Academic Publishers. June 1999 Themistocles M. Rassias Hari M."
This text 1s designed to introduce the fundamentals of esti mation to engineers, scientists, and applied mathematicians. The level of the presentation should be accessible to senior under graduates and should prove especially well-suited as a self study guide for practicing professionals. My primary motivation for writing this book 1s to make a significant contribution toward minimizing the painful process most newcomers must go through in digesting and applying the theory. Thus the treatment 1s intro ductory and essence-oriented rather than comprehensive. While some original material 1s included, the justification for this text lies not in the contribution of dramatic new theoretical re sults, but rather in the degree of success I believe that I have achieved in providing a source from which this material may be learned more efficiently than through study of an existing text or the rather diffuse literature. This work is the outgrowth of the author's mid-1960's en counter with the subject while motivated by practical problems aSSociated with space vehicle orbit determination and estimation of powered rocket trajectories. The text has evolved as lecture notes for short courses and seminars given to professionals at Pr>efaae various private laboratories and government agencies, and during the past six years, in conjunction with engineering courses taught at the University of Virginia. To motivate the reader's thinking, the structure of a typical estimation problem often assumes the following form: * Given a dynamical system, a mathematical model is hypothesized based upon the experience of the investigator.
This second edition of Generalized Functions has been strengthened in many ways. The already extensive set of examples has been expanded. Since the publication of the first edition, there has been tremendous growth in the subject and I have attempted to incorporate some of these new concepts. Accordingly, almost all the chapters have been revised. The bibliography has been enlarged considerably. Some of the material has been reorganized. For example, Chapters 12 and 13 of the first edition have been consolidated into Chapter 12 of this edition by a judicious process of elimination and addition of the subject matter. The new Chapter 13 explains the interplay between the theories of moments, asymptotics, and singular perturbations. Similarly, some sections of Chapter 15 have been revised and included in earlier chapters to improve the logical flow of ideas. However, two sections are retained. The section dealing with the application of the probability theory has been revised, and I am thankful to Professor Z.L. Crvenkovic for her help. The new material included in this chapter pertains to the modern topics of periodic distributions and microlocal theory. I have demonstrated through various examples that familiarity with the generalized functions is very helpful for students in physical sciences and technology. For instance, the reader will realize from Chapter 6 how the generalized functions have revolutionized the Fourier analysis which is being used extensively in many fields of scientific activity.
There are a great deal of books on introductory analysis in print today, many written by mathematicians of the first rank. The publication of another such book therefore warrants a defense. I have taught analysis for many years and have used a variety of texts during this time. These books were of excellent quality mathematically but did not satisfy the needs of the students I was teaching. They were written for mathematicians but not for those who were first aspiring to attain that status. The desire to fill this gap gave rise to the writing of this book. This book is intended to serve as a text for an introductory course in analysis. Its readers will most likely be mathematics, science, or engineering majors undertaking the last quarter of their undergraduate education. The aim of a first course in analysis is to provide the student with a sound foundation for analysis, to familiarize him with the kind of careful thinking used in advanced mathematics, and to provide him with tools for further work in it. The typical student we are dealing with has completed a three-semester calculus course and possibly an introductory course in differential equations. He may even have been exposed to a semester or two of modern algebra. All this time his training has most likely been intuitive with heuristics taking the place of proof. This may have been appropriate for that stage of his development.
Although much of classical ergodic theory is concerned with single transformations and one-parameter flows, the subject inherits from statistical mechanics not only its name, but also an obligation to analyze spatially extended systems with multidimensional symmetry groups. However, the wealth of concrete and natural examples which has contributed so much to the appeal and development of classical dynamics, is noticeably absent in this more general theory. The purpose of this book is to help remedy this scarcity of explicit examples by introducing a class of continuous Zd-actions diverse enough to exhibit many of the new phenomena encountered in the transition from Z to Zd, but which nevertheless lends itself to systematic study: the Zd-actions by automorphisms of compact, abelian groups. One aspect of these actions, not surprising in itself but quite striking in its extent and depth nonetheless, is the connection with commutative algebra and arithmetical algebraic geometry. The algebraic framework resulting from this connection allows the construction of examples with a variety of specified dynamical properties, and by combining algebraic and dynamical tools one obtains a quite detailed understanding of this class of Zd-actions." |
![]() ![]() You may like...
Technology In Action Complete, Global…
Alan Evans, Kendall Martin, …
Paperback
R2,857
Discovery Miles 28 570
Corruption Networks - Concepts and…
Oscar M. Granados, Jose R. Nicolas-Carlock
Hardcover
R3,793
Discovery Miles 37 930
Balancing Agile and Disciplined…
Manuel Mora, Jorge Marx Gomez, …
Hardcover
R7,152
Discovery Miles 71 520
Management Of Information Security
Michael Whitman, Herbert Mattord
Paperback
Handbook of Research on Smart Technology…
J. Joshua Thomas, Ugo Fiore, …
Hardcover
R9,267
Discovery Miles 92 670
Many-Criteria Optimization and Decision…
Dimo Brockhoff, Michael Emmerich, …
Hardcover
R4,674
Discovery Miles 46 740
Legal Tech, Smart Contracts and…
Marcelo Corrales, Mark Fenwick, …
Hardcover
R4,604
Discovery Miles 46 040
|