Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
|||
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
Nonstandard Methods of Analysis is concerned with the main trends in this field; infinitesimal analysis and Boolean-valued analysis. The methods that have been developed in the last twenty-five years are explained in detail, and are collected in book form for the first time. Special attention is paid to general principles and fundamentals of formalisms for infinitesimals as well as to the technique of descents and ascents in a Boolean-valued universe. The book also includes various novel applications of nonstandard methods to ordered algebraic systems, vector lattices, subdifferentials, convex programming etc. that have been developed in recent years. For graduate students, postgraduates and all researchers interested in applying nonstandard methods in their work.
Many changes have been made in this second edition of A First Course in Real Analysis. The most noticeable is the addition of many problems and the inclusion of answers to most of the odd-numbered exercises. The book's readability has also been improved by the further clarification of many of the proofs, additional explanatory remarks, and clearer notation.
This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.
Mathematics students generally meet the Riemann integral early in their undergraduate studies, then at advanced undergraduate or graduate level they receive a course on measure and integration dealing with the Lebesgue theory. However, those whose interests lie more in the direction of applied mathematics will in all probability find themselves needing to use the Lebesgue or Lebesgue-Stieltjes Integral without having the necessary theoretical background. It is to such readers that this book is addressed. The authors aim to introduce the Lebesgue-Stieltjes integral on the real line in a natural way as an extension of the Riemann integral. They have tried to make the treatment as practical as possible. The evaluation of Lebesgue-Stieltjes integrals is discussed in detail, as are the key theorems of integral calculus as well as the standard convergence theorems. The book then concludes with a brief discussion of multivariate integrals and surveys ok L DEGREESp spaces and some applications. Exercises, which extend and illustrate the theory, and provide practice in techniques, are included. Michael Carter and Bruce van Brunt are senior lecturers in mathematics at Massey University, Palmerston North, New Zealand. Michael Carter obtained his Ph.D. at Massey University in 1976. He has research interests in control theory and differential equations, and has many years of experience in teaching analysis. Bruce van Brunt obtained his D.Phil. at the University of Oxford in 1989. His research interests include differential geometry, differential equations, and analysis. His publications
Analytic and Geometric Inequalities and Applications is devoted to recent advances in a variety of inequalities of Mathematical Analysis and Geo metry. Subjects dealt with in this volume include: Fractional order inequalities of Hardy type, differential and integral inequalities with initial time differ ence, multi-dimensional integral inequalities, Opial type inequalities, Gruss' inequality, Furuta inequality, Laguerre-Samuelson inequality with extensions and applications in statistics and matrix theory, distortion inequalities for ana lytic and univalent functions associated with certain fractional calculus and other linear operators, problem of infimum in the positive cone, alpha-quasi convex functions defined by convolution with incomplete beta functions, Chebyshev polynomials with integer coefficients, extremal problems for poly nomials, Bernstein's inequality and Gauss-Lucas theorem, numerical radii of some companion matrices and bounds for the zeros of polynomials, degree of convergence for a class of linear operators, open problems on eigenvalues of the Laplacian, fourth order obstacle boundary value problems, bounds on entropy measures for mixed populations as well as controlling the velocity of Brownian motion by its terminal value. A wealth of applications of the above is also included. We wish to express our appreciation to the distinguished mathematicians who contributed to this volume. Finally, it is our pleasure to acknowledge the fine cooperation and assistance provided by the staff of Kluwer Academic Publishers. June 1999 Themistocles M. Rassias Hari M."
This is a textbook containing more than enough material for a year-long course in analysis at the advanced undergraduate or beginning graduate level. The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral. The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean space). The final part of the book deals with manifolds, differential forms, and Stokes' theorem, which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle.
Often I have considered the fact that most of the difficulties which block the progress of students trying to learn analysis stem from this: that although they understand little of ordinary algebra, still they attempt this more subtle art. From this it follows not only that they remain on the fringes, but in addition they entertain strange ideas about the concept of the infinite, which they must try to use. Although analysis does not require an exhaustive knowledge of algebra, even of all the algebraic technique so far discovered, still there are topics whose con sideration prepares a student for a deeper understanding. However, in the ordinary treatise on the elements of algebra, these topics are either completely omitted or are treated carelessly. For this reason, I am cer tain that the material I have gathered in this book is quite sufficient to remedy that defect. I have striven to develop more adequately and clearly than is the usual case those things which are absolutely required for analysis. More over, I have also unraveled quite a few knotty problems so that the reader gradually and almost imperceptibly becomes acquainted with the idea of the infinite. There are also many questions which are answered in this work by means of ordinary algebra, although they are usually discussed with the aid of analysis. In this way the interrelationship between the two methods becomes clear."
This text is unique in accepting probability theory as an essential part of measure theory. Therefore, many examples are taken from probability, and probabilistic concepts such as independence and Markov processes are integrated into the text. Also, more attention than usual is paid to the role of algebras, and the metric defining the distance between sets as the measure of their symmetric difference is exploited more than is customary.
An introduction to nonstandard analysis based on a course given by the author. It is suitable for beginning graduates or upper undergraduates, or for self-study by anyone familiar with elementary real analysis. It presents nonstandard analysis not just as a theory about infinitely small and large numbers, but as a radically different way of viewing many standard mathematical concepts and constructions. It is a source of new ideas, objects and proofs, and a wealth of powerful new principles of reasoning. The book begins with the ultrapower construction of hyperreal number systems, and proceeds to develop one-variable calculus, analysis and topology from the nonstandard perspective. It then sets out the theory of enlargements of fragments of the mathematical universe, providing a foundation for the full-scale development of the nonstandard methodology. The final chapters apply this to a number of topics, including Loeb measure theory and its relation to Lebesgue measure on the real line. Highlights include an early introduction of the ideas of internal, external and hyperfinite sets, and a more axiomatic set-theoretic approach to enlargements than is usual.
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
'Et moi, ..., si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point alIe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This concise, well-written handbook provides a distillation of real variable theory with a particular focus on the subject's significant applications to differential equations and Fourier analysis. Ample examples and brief explanations---with very few proofs and little axiomatic machinery---are used to highlight all the major results of real analysis, from the basics of sequences and series to the more advanced concepts of Taylor and Fourier series, Baire Category, and the Weierstrass Approximation Theorem. Replete with realistic, meaningful applications to differential equations, boundary value problems, and Fourier analysis, this unique work is a practical, hands-on manual of real analysis that is ideal for physicists, engineers, economists, and others who wish to use the fruits of real analysis but who do not necessarily have the time to appreciate all of the theory. Valuable as a comprehensive reference, a study guide for students, or a quick review, "A Handbook of Real Variables" will benefit a wide audience.
This text covers many principal topics in the theory of functions of a complex variable. These include, in real analysis, set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces. In complex analysis, they include polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.
One service mathematics has rendered the l moil ..., Ii j'avait su comment en revenir, je n'y serais point aUe.' human race. It has put common sense back Jules Verne where it belongs, on the topmost shelf next to the dusty canister labelled 'discarded non- The series is divergent; therefore we may be sense'. Eric T. Bell able to do something with it. O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'(ftre of this series."
The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
Variational calculus has been the basis of a variety of powerful methods in the ?eld of mechanics of materials for a long time. Examples range from numerical schemes like the ?nite element method to the determination of effective material properties via homogenization and multiscale approaches. In recent years, however, a broad range of novel applications of variational concepts has been developed. This c- prises the modeling of the evolution of internal variables in inelastic materials as well as the initiation and development of material patterns and microstructures. The IUTAM Symposium on "Variational Concepts with Applications to the - chanics of Materials" took place at the Ruhr-University of Bochum, Germany, on September 22-26, 2008. The symposium was attended by 55 delegates from 10 countries. Altogether 31 lectures were presented. The objective of the symposium was to give an overview of the new dev- opments sketched above, to bring together leading experts in these ?elds, and to provide a forum for discussing recent advances and identifying open problems to work on in the future. The symposium focused on the developmentof new material models as well as the advancement of the corresponding computational techniques. Speci?c emphasis is put on the treatment of materials possessing an inherent - crostructure and thus exhibiting a behavior which fundamentally involves multiple scales. Among the topics addressed at the symposium were: 1. Energy-based modeling of material microstructures via envelopes of n- quasiconvex potentials and applications to plastic behavior and pha- transformations.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, tbat they can't see the problem. perbaps you will find the fina\ question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuJik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such newemerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
This fifth edition of Lang's book covers all the topics traditionally taught in the first-year calculus sequence. Divided into five parts, each section of A FIRST COURSE IN CALCULUS contains examples and applications relating to the topic covered. In addition, the rear of the book contains detailed solutions to a large number of the exercises, allowing them to be used as worked-out examples -- one of the main improvements over previous editions.
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov-Arnold-Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert-Arnold problem for the number of zeros of abelian integrals, Arnold's inequality, comparison, and complexification method in real algebraic geometry, Arnold-Kolmogorov solution of Hilbert's 13th problem, Arnold's spectral sequence in singularity theory, Arnold diffusion, The Euler-Poincare-Arnold equations for geodesics on Lie groups, Arnold's stability criterion in hydrodynamics, ABC (Arnold-Beltrami-Childress) ?ows in ?uid dynamics, The Arnold-Korkina dynamo, Arnold's cat map, The Arnold-Liouville theorem in integrable systems, Arnold's continued fractions, Arnold's interpretation of the Maslov index, Arnold's relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan-Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold's books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world."
This book is first of all designed as a text for the course usually called "theory of functions of a real variable". This course is at present cus tomarily offered as a first or second year graduate course in United States universities, although there are signs that this sort of analysis will soon penetrate upper division undergraduate curricula. We have included every topic that we think essential for the training of analysts, and we have also gone down a number of interesting bypaths. We hope too that the book will be useful as a reference for mature mathematicians and other scientific workers. Hence we have presented very general and complete versions of a number of important theorems and constructions. Since these sophisticated versions may be difficult for the beginner, we have given elementary avatars of all important theorems, with appro priate suggestions for skipping. We have given complete definitions, ex planations, and proofs throughout, so that the book should be usable for individual study as well as for a course text. Prerequisites for reading the book are the following. The reader is assumed to know elementary analysis as the subject is set forth, for example, in TOM M. ApOSTOL'S Mathematical Analysis [Addison-Wesley Publ. Co., Reading, Mass., 1957], or WALTER RUDIN'S Principles of M athe nd matical Analysis [2 Ed., McGraw-Hill Book Co., New York, 1964].
This book is an extended version of lectures given by the ?rst author in 1995-1996 at the Department of Mechanics and Mathematics of Moscow State University. We believe that a major part of the book can be regarded as an additional material to the standard course of Hamiltonian mechanics. In comparison with the original Russian 1 version we have included new material, simpli?ed some proofs and corrected m- prints. Hamiltonian equations ?rst appeared in connection with problems of geometric optics and celestial mechanics. Later it became clear that these equations describe a large classof systemsin classical mechanics, physics, chemistry, and otherdomains. Hamiltonian systems and their discrete analogs play a basic role in such problems as rigid body dynamics, geodesics on Riemann surfaces, quasi-classic approximation in quantum mechanics, cosmological models, dynamics of particles in an accel- ator, billiards and other systems with elastic re?ections, many in?nite-dimensional models in mathematical physics, etc. In this book we study Hamiltonian systems assuming that they depend on some parameter (usually?), where for?= 0 the dynamics is in a sense simple (as a rule, integrable). Frequently such a parameter appears naturally. For example, in celestial mechanics it is accepted to take? equal to the ratio: the mass of Jupiter over the mass of the Sun. In other cases it is possible to introduce the small parameter ar- ?cial
Starting with Cook's pioneering work on NP-completeness in 1970, polynomial complexity theory, the study of polynomial-time com putability, has quickly emerged as the new foundation of algorithms. On the one hand, it bridges the gap between the abstract approach of recursive function theory and the concrete approach of analysis of algorithms. It extends the notions and tools of the theory of computability to provide a solid theoretical foundation for the study of computational complexity of practical problems. In addition, the theoretical studies of the notion of polynomial-time tractability some times also yield interesting new practical algorithms. A typical exam ple is the application of the ellipsoid algorithm to combinatorial op timization problems (see, for example, Lovasz 1986]). On the other hand, it has a strong influence on many different branches of mathe matics, including combinatorial optimization, graph theory, number theory and cryptography. As a consequence, many researchers have begun to re-examine various branches of classical mathematics from the complexity point of view. For a given nonconstructive existence theorem in classical mathematics, one would like to find a construc tive proof which admits a polynomial-time algorithm for the solution. One of the examples is the recent work on algorithmic theory of per mutation groups. In the area of numerical computation, there are also two tradi tionally independent approaches: recursive analysis and numerical analysis."
This book which is the outcome of a NATO-Advanced Study Institute on Mod elling the Ocean Circulation and Geochemical Tracer Transport is concerned with using models to infer the ocean circulation. Understanding our climate is one of the major problems of the late twentieth century. The possible climatic changes resulting from the rise in atmospheric carbon dioxide and other trace gases are of primary interest and the ocean pla. ys a ma. jor role in determining the magnitude, temporal evolution and regional distribution of those changes. Because of the poor observational basis the ocean general circulation is not well understood. The World Ocean Circulation Experiment (WOCE) which is now underway is an attempt to improve our knowledge of ocean dynamics and thermodynamics on global scales relevant to climate change. Despite those efforts, the oceanic data base is likely to remain scarce and it is crucial to use appropriate methods in order to extract the maximum amount of information from observations. The book contains a thorough analysis of methods to combine data of val'ious types with dynamical concepts, and to assimilate data directly into ocean models. The properties of geocl;temical tracers such as HC, He, Tritium and Freons and how they may be used to impose integral constraints on the ocean circulation are discussed." |
You may like...
Extremal Problems in Interpolation…
Sergey Kislyakov, Natan Kruglyak
Hardcover
R2,830
Discovery Miles 28 300
Fractional Calculus: Models And…
Dumitru Baleanu, Kai Diethelm, …
Hardcover
R3,898
Discovery Miles 38 980
Real Analysis and Applications - Theory…
Kenneth R. Davidson, Allan P. Donsig
Hardcover
R2,102
Discovery Miles 21 020
Fixed Point Theory in Metric Type Spaces
Ravi P. Agarwal, Erdal Karapinar, …
Hardcover
R3,815
Discovery Miles 38 150
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,720
Discovery Miles 37 200
|