![]() |
Welcome to Loot.co.za!
Sign in / Register |Wishlists & Gift Vouchers |Help | Advanced search
|
Your cart is empty |
||
|
Books > Science & Mathematics > Mathematics > Calculus & mathematical analysis > Real analysis
'Ht moi, ..., si j'avait su comment en revenir, One lemce mathematics has rendered the je n'y serai. point aile.' human race. It has put common sense back Jule. Verne ..... "'" it belong., on the topmost shelf next to the dusty caniller labelled 'discarded non- The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d' re of this series."
Vladimir Igorevich Arnold is one of the most influential mathematicians of our time. V. I. Arnold launched several mathematical domains (such as modern geometric mechanics, symplectic topology, and topological fluid dynamics) and contributed, in a fundamental way, to the foundations and methods in many subjects, from ordinary differential equations and celestial mechanics to singularity theory and real algebraic geometry. Even a quick look at a partial list of notions named after Arnold already gives an overview of the variety of such theories and domains: KAM (Kolmogorov-Arnold-Moser) theory, The Arnold conjectures in symplectic topology, The Hilbert-Arnold problem for the number of zeros of abelian integrals, Arnold's inequality, comparison, and complexification method in real algebraic geometry, Arnold-Kolmogorov solution of Hilbert's 13th problem, Arnold's spectral sequence in singularity theory, Arnold diffusion, The Euler-Poincare-Arnold equations for geodesics on Lie groups, Arnold's stability criterion in hydrodynamics, ABC (Arnold-Beltrami-Childress) ?ows in ?uid dynamics, The Arnold-Korkina dynamo, Arnold's cat map, The Arnold-Liouville theorem in integrable systems, Arnold's continued fractions, Arnold's interpretation of the Maslov index, Arnold's relation in cohomology of braid groups, Arnold tongues in bifurcation theory, The Jordan-Arnold normal forms for families of matrices, The Arnold invariants of plane curves. Arnold wrote some 700 papers, and many books, including 10 university textbooks. He is known for his lucid writing style, which combines mathematical rigour with physical and geometric intuition. Arnold's books on Ordinarydifferentialequations and Mathematical methodsofclassicalmechanics became mathematical bestsellers and integral parts of the mathematical education of students throughout the world."
This book contains an introduction to the theory of functions, with emphasis on functions of several variables. The central topics are the differentiation and integration of such functions. Although many of the topics are familiar, the treatment is new; the book developed from a new approach to the theory of differentiation. Iff is a function of two real variables x and y, its deriva tives at a point Po can be approximated and found as follows. Let PI' P2 be two points near Po such that Po, PI, P2 are not on a straight line. The linear function of x and y whose values at Po, PI' P2 are equal to those off at these points approximates f near Po; determinants can be used to find an explicit representation of this linear function (think of the equation of the plane through three points in three-dimensional space). The (partial) derivatives of this linear function are approximations to the derivatives of f at Po; each of these (partial) derivatives of the linear function is the ratio of two determinants. The derivatives off at Po are defined to be the limits of these ratios as PI and P2 approach Po (subject to an important regularity condition). This simple example is only the beginning, but it hints at a m theory of differentiation for functions which map sets in IRn into IR which is both general and powerful, and which reduces to the standard theory of differentiation in the one-dimensional case."
'Et moi ..... si j'avait su comment en revenir, One service mathematics has rendered the je n'y serais point aIle.' human race. It has put common sense back Jules Verne where it belongs. on the topmost shelf next to the dusty canister labelled 'discarded non. The series is divergent; therefore we may be sense'. able to do something with it. Eric T. Bell O. Heaviside Mathematics is a tool for thought. A highly necessary tool in a world where both feedback and non linearities abound. Similarly, all kinds of parts of mathematics serve as tools for other parts and for other sciences. Applying a simple rewriting rule to the quote on the right above one finds such statements as: 'One service topology has rendered mathematical physics .. .'; 'One service logic has rendered com puter science .. .'; 'One service category theory has rendered mathematics .. .'. All arguably true. And all statements obtainable this way form part of the raison d'etre of this series."
This book is meant as a text for a first-year graduate course in analysis. In a sense, it covers the same topics as elementary calculus but treats them in a manner suitable for people who will be using it in further mathematical investigations. The organization avoids long chains of logical interdependence, so that chapters are mostly independent. This allows a course to omit material from some chapters without compromising the exposition of material from later chapters.
The aim of this book is to give a rigorous and complete treatment of various topics from harmonic analysis with a strong emphasis on symplectic invariance properties, which are often ignored or underestimated in the time-frequency literature. The topics that are addressed include (but are not limited to) the theory of the Wigner transform, the uncertainty principle (from the point of view of symplectic topology), Weyl calculus and its symplectic covariance, Shubin s global theory of pseudo-differential operators, and Feichtinger s theory of modulation spaces. Several applications to time-frequency analysis and quantum mechanics are given, many of them concurrent with ongoing research. For instance, a non-standard pseudo-differential calculus on phase space where the main role is played by Bopp operators (also called Landau operators in the literature) is introduced and studied. This calculus is closely related to both the Landau problem and to the deformation quantization theory of Flato and Sternheimer, of which it gives a simple pseudo-differential formulation where Feichtinger s modulation spaces are key actors. This book is primarily directed towards students or researchers in harmonic analysis (in the broad sense) and towards mathematical physicists working in quantum mechanics. It can also be read with profit by researchers in time-frequency analysis, providing a valuable complement to the existing literature on the topic. A certain familiarity with Fourier analysis (in the broad sense) and introductory functional analysis (e.g. the elementary theory of distributions) is assumed. Otherwise, the book is largely self-contained and includes an extensive list of references.
Intended as an undergraduate text on real analysis, this book includes all the standard material such as sequences, infinite series, continuity, differentiation, and integration, together with worked examples and exercises. By unifying and simplifying all the various notions of limit, the author has successfully presented a novel approach to the subject matter, which has not previously appeared in book form. The author defines the term limit once only, and all of the subsequent limiting processes are seen to be special cases of this one definition. Accordingly, the subject matter attains a unity and coherence that is not to be found in the traditional approach. Students will be able to fully appreciate and understand the common source of the topics they are studying while also realising that they are "variations on a theme", rather than essentially different topics, and therefore, will gain a better understanding of the subject.
This text is unique in accepting probability theory as an essential part of measure theory. Therefore, many examples are taken from probability, and probabilistic concepts such as independence and Markov processes are integrated into the text. Also, more attention than usual is paid to the role of algebras, and the metric defining the distance between sets as the measure of their symmetric difference is exploited more than is customary.
Many changes have been made in this second edition of A First Course in Real Analysis. The most noticeable is the addition of many problems and the inclusion of answers to most of the odd-numbered exercises. The book's readability has also been improved by the further clarification of many of the proofs, additional explanatory remarks, and clearer notation.
Real Analysis, 4th Edition covers the basic material that every graduate student should know in the classical theory of functions of a real variable, measure and integration theory, and some of the more important and elementary topics in general topology and normed linear space theory. It assumes a general background in undergraduate mathematics and familiarity with the material covered in an undergraduate course on the fundamental concepts of analysis. Patrick Fitzpatrick of the University of Maryland - College Park spearheaded this revision of Halsey Royden's classic text. This title is part of the Pearson Modern Classics series. Pearson Modern Classics are acclaimed titles at a value price.
This text covers many principal topics in the theory of functions of a complex variable. These include, in real analysis, set algebra, measure and topology, real- and complex-valued functions, and topological vector spaces. In complex analysis, they include polynomials and power series, functions holomorphic in a region, entire functions, analytic continuation, singularities, harmonic functions, families of functions, and convexity theorems.
This is a textbook containing more than enough material for a year-long course in analysis at the advanced undergraduate or beginning graduate level. The book begins with a brief discussion of sets and mappings, describes the real number field, and proceeds to a treatment of real-valued functions of a real variable. Separate chapters are devoted to the ideas of convergent sequences and series, continuous functions, differentiation, and the Riemann integral. The middle chapters cover general topology and a miscellany of applications: the Weierstrass and Stone-Weierstrass approximation theorems, the existence of geodesics in compact metric spaces, elements of Fourier analysis, and the Weyl equidistribution theorem. Next comes a discussion of differentiation of vector-valued functions of several real variables, followed by a brief treatment of measure and integration (in a general setting, but with emphasis on Lebesgue theory in Euclidean space). The final part of the book deals with manifolds, differential forms, and Stokes' theorem, which is applied to prove Brouwer's fixed point theorem and to derive the basic properties of harmonic functions, such as the Dirichlet principle.
The purpose of this book is to communicate some of the recent advances in this field while preparing the reader for more advanced study. The material can be roughly divided into three different types: classical, standard but sometimes with a new twist, and recent. The author first studies basic covering theorems and their applications to analysis in metric measure spaces. This is followed by a discussion on Sobolev spaces emphasizing principles that are valid in larger contexts. The last few sections of the book present a basic theory of quasisymmetric maps between metric spaces. Much of the material is recent and appears for the first time in book format.
Mathematics is the music of science, and real analysis is the Bach of mathematics. There are many other foolish things I could say about the subject of this book, but the foregoing will give the reader an idea of where my heart lies. The present book was written to support a first course in real analysis, normally taken after a year of elementary calculus. Real analysis is, roughly speaking, the modern setting for Calculus, "real" alluding to the field of real numbers that underlies it all. At center stage are functions, defined and taking values in sets of real numbers or in sets (the plane, 3-space, etc.) readily derived from the real numbers; a first course in real analysis traditionally places the emphasis on real-valued functions defined on sets of real numbers. The agenda for the course: (1) start with the axioms for the field ofreal numbers, (2) build, in one semester and with appropriate rigor, the foun dations of calculus (including the "Fundamental Theorem"), and, along the way, (3) develop those skills and attitudes that enable us to continue learning mathematics on our own. Three decades of experience with the exercise have not diminished my astonishment that it can be done.
This concise, well-written handbook provides a distillation of real variable theory with a particular focus on the subject's significant applications to differential equations and Fourier analysis. Ample examples and brief explanations---with very few proofs and little axiomatic machinery---are used to highlight all the major results of real analysis, from the basics of sequences and series to the more advanced concepts of Taylor and Fourier series, Baire Category, and the Weierstrass Approximation Theorem. Replete with realistic, meaningful applications to differential equations, boundary value problems, and Fourier analysis, this unique work is a practical, hands-on manual of real analysis that is ideal for physicists, engineers, economists, and others who wish to use the fruits of real analysis but who do not necessarily have the time to appreciate all of the theory. Valuable as a comprehensive reference, a study guide for students, or a quick review, "A Handbook of Real Variables" will benefit a wide audience.
This volume is a collection of manscripts mainly originating from talks and lectures given at the Workshop on Recent Trends in Complex Methods for Par tial Differential Equations held from July 6 to 10, 1998 at the Middle East Technical University in Ankara, Turkey, sponsored by The Scientific and Tech nical Research Council of Turkey and the Middle East Technical University. This workshop is a continuation oftwo workshops from 1988 and 1993 at the In ternational Centre for Theoretical Physics in Trieste, Italy entitled Functional analytic Methods in Complex Analysis and Applications to Partial Differential Equations. Since classical complex analysis of one and several variables has a long tra dition it is of high level. But most of its basic problems are solved nowadays so that within the last few decades it has lost more and more attention. The area of complex and functional analytic methods in partial differential equations, however, is still a growing and flourishing field, in particular as these methods are not only applied. Whithin the framework of holomorphic functions but are also combined with properties of generalized analytic functions. This can be seen by the many books which recently were published in this field and also by the proceedings in this ISAAC series and the ISAAC congresses and workshops."
The theory of Toeplitz matrices and operators is a vital part of modern analysis, with applications to moment problems, orthogonal polynomials, approximation theory, integral equations, bounded- and vanishing-mean oscillations, and asymptotic methods for large structured determinants, among others. This friendly introduction to Toeplitz theory covers the classical spectral theory of Toeplitz forms and Wiener-Hopf integral operators and their manifestations throughout modern functional analysis. Numerous solved exercises illustrate the results of the main text and introduce subsidiary topics, including recent developments. Each chapter ends with a survey of the present state of the theory, making this a valuable work for the beginning graduate student and established researcher alike. With biographies of the principal creators of the theory and historical context also woven into the text, this book is a complete source on Toeplitz theory.
In this edition, a set of Supplementary Notes and Remarks has been added at the end, grouped according to chapter. Some of these call attention to subsequent developments, others add further explanation or additional remarks. Most of the remarks are accompanied by a briefly indicated proof, which is sometimes different from the one given in the reference cited. The list of references has been expanded to include many recent contributions, but it is still not intended to be exhaustive. John C. Oxtoby Bryn Mawr, April 1980 Preface to the First Edition This book has two main themes: the Baire category theorem as a method for proving existence, and the "duality" between measure and category. The category method is illustrated by a variety of typical applications, and the analogy between measure and category is explored in all of its ramifications. To this end, the elements of metric topology are reviewed and the principal properties of Lebesgue measure are derived. It turns out that Lebesgue integration is not essential for present purposes-the Riemann integral is sufficient. Concepts of general measure theory and topology are introduced, but not just for the sake of generality. Needless to say, the term "category" refers always to Baire category; it has nothing to do with the term as it is used in homological algebra.
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green's theorem, multiple integrals, surface integrals, Stokes' theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, tbat they can't see the problem. perbaps you will find the fina\ question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van GuJik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various sciences has changed drastically in recent years: measure theory is used (non-trivially) in regional and theoretical economics; algebraic geometry interacts with physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and mathematical programming profit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such newemerging subdisciplines as "experimental mathematics," "CFD," "completely integrable systems," "chaos, synergetics and large-scale order," which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics.
These proceedings contain lectures and contributed papers presented at the NATO-NSF Advanced Study Institute on Optimization of Distributed Parameter Structures (Iowa City, Iowa 21 May - 4 June, 1980). The institute was organized by E. Haug and J. Cea, with the enthusiastic help of leading contributors to the field of distributed parameter structural optimization. The principle con tributor to this field during the past two decades, Professor William Prager, participated in planning for the Institute and helped to establish its technical direction. His death just prior to the Institute is a deep loss to the community of engineers and mathematicians in the field, to which he made pioneering contri butions. The proceedings are organized into seven parts, each address ing important problems and special considerations involving classes of structural optimization problems. The review paper presented first in the proceedings surveys contributions to the field, primarily during the decade 1970-1980. Part I of the pro ceedings addresses optimality criteria methods for analyzing and solving problems of distributed parameter structural optimization. Optimality criteria obtained using variational methods of mech anics, calculus of variation, optimal control theory, and abstract optimization theory are presented for numerous classes of struct ures; including beams, columns, plates, grids, shells, and arches."
This book considers methods of approximate analysis of mechanical, elec tromechanical, and other systems described by ordinary differential equa tions. Modern mathematical modeling of sophisticated mechanical systems consists of several stages: first, construction of a mechanical model, and then writing appropriate equations and their analytical or numerical ex amination. Usually, this procedure is repeated several times. Even if an initial model correctly reflects the main properties of a phenomenon, it de scribes, as a rule, many unnecessary details that make equations of motion too complicated. As experience and experimental data are accumulated, the researcher considers simpler models and simplifies the equations. Thus some terms are discarded, the order of the equations is lowered, and so on. This process requires time, experimentation, and the researcher's intu ition. A good example of such a semi-experimental way of simplifying is a gyroscopic precession equation. Formal mathematical proofs of its admis sibility appeared some several decades after its successful introduction in engineering calculations. Applied mathematics now has at its disposal many methods of approxi mate analysis of differential equations. Application of these methods could shorten and formalize the procedure of simplifying the equations and, thus, of constructing approximate motion models. Wide application of the methods into practice is hindered by the fol lowing. 1. Descriptions of various approximate methods are scattered over the mathematical literature. The researcher, as a rule, does not know what method is most suitable for a specific case. 2."
These proceedings contain lectures and contributed papers presented at the NATO-NSF Advanced Stucy Institute on Optimization of Distributed Parameter Structures (Iowa City, Iowa 21 May - 4 June, 1980). The institute was organized by E. Haug and J. Cea, with the enthusiastic help of leading contributors to the field of distributed parameter structural optimization. The principle con tributor to this field during the past two decades, Professor William Prager, participated in planning for the Institute and helped to establish its technical direction. His death just prior to the Institute is a deep loss to the community of engineers and mathematicians in the field, to which he made pioneering contri butions. The proceedings are organized into seven parts, each address ing important problems and special considerations involving classes of structural optimization problems. The review paper presented first in the proceedings surveys contributions to the field, primarily during the decade 1970-1980. Part I of the pro ceedings addresses optimality criteria methods for analyzing and solving problems of distributed parameter structural optimization. Optimality criteria obtained using variational methods of mech anics, calculus of variation, optimal control theory, and abstract optimization theory are presented for numerous classes of struct ures; including beams, columns, plates, grids, shells, and arches."
Approach your problems from the right end It isn't that they can't see the solution. It is and begin with the answers. Then one day, that they can't see the problem. perhaps you will find the final question. G. K. Chesterton. The Scandal of Father 'The Hermit Clad in Crane Feathers' in R. Brown 'The point of a Pin'. van Gulik's The Chinese Maze Murders. Growing specialization and diversification have brought a host of monographs and textbooks on increasingly specialized topics. However, the "tree" of knowledge of mathematics and related fields does not grow only by putting forth new branches. It also happens, quite often in fact, that branches which were. thought to be completely disparate are suddenly seen to be related. Further, the kind and level of sophistication of mathematics applied in various Isciences has changed drastically in recent years: measure theory is used (non trivially) in regional and theoretical economics; algebraic geom. eJry interacts with I physics; the Minkowsky lemma, coding theory and the structure of water meet one another in packing and covering theory; quantum fields, crystal defects and rpathematical programminglprofit from homotopy theory; Lie algebras are relevant to filtering; and prediction and electrical engineering can use Stein spaces. And in addition to this there are such new emerging subdisciplines as "experimental mathematics", "CFD", "completely integrable systems", "chaos, synergetics and large-scale order", which are almost impossible to fit into the existing classification schemes. They draw upon widely different sections of mathematics. |
You may like...
Analysis, Partial Differential Equations…
Alberto Cialdea, Flavia Lanzara, …
Hardcover
R4,073
Discovery Miles 40 730
Continuous Nowhere Differentiable…
Marek Jarnicki, Peter Pflug
Hardcover
R3,399
Discovery Miles 33 990
Real Analysis with an Introduction to…
Don Hong, Jian zhong Wang, …
Hardcover
R2,200
Discovery Miles 22 000
Discrete Fractional Calculus
Christopher Goodrich, Allan C. Peterson
Hardcover
R2,566
Discovery Miles 25 660
Operator Theory And Analysis Of Infinite…
Palle Jorgensen, Erin P. J. Pearse
Hardcover
R3,532
Discovery Miles 35 320
Complex Analysis in One Variable
Raghavan Narasimhan, Yves Nievergelt
Hardcover
R2,619
Discovery Miles 26 190
|